傅氏奇点的代数理论

H. Lenzing
{"title":"傅氏奇点的代数理论","authors":"H. Lenzing","doi":"10.1090/CONM/761/15315","DOIUrl":null,"url":null,"abstract":"This article has the following aims: \n(1) Extend the notion of fuchsian singularities (of first kind) to base fields of arbitrary characteristic. \n(2) Discuss their relationship to mathematical objects of a different nature. \n(3) Provide a purely ring-theoretic characterization of fuchsian singularities. \n(4) Expoloit their singularity categories and their Grothendieck groups.","PeriodicalId":325430,"journal":{"name":"Advances in Representation Theory of\n Algebras","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The algebraic theory of fuchsian\\n singularties\",\"authors\":\"H. Lenzing\",\"doi\":\"10.1090/CONM/761/15315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article has the following aims: \\n(1) Extend the notion of fuchsian singularities (of first kind) to base fields of arbitrary characteristic. \\n(2) Discuss their relationship to mathematical objects of a different nature. \\n(3) Provide a purely ring-theoretic characterization of fuchsian singularities. \\n(4) Expoloit their singularity categories and their Grothendieck groups.\",\"PeriodicalId\":325430,\"journal\":{\"name\":\"Advances in Representation Theory of\\n Algebras\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Representation Theory of\\n Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/761/15315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Representation Theory of\n Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/761/15315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的如下:(1)将第一类奇异点的概念推广到具有任意特征的基域。(2)讨论它们与不同性质的数学对象的关系。(3)给出了一个纯环理论的傅氏奇点的描述。(4)利用它们的奇点范畴和Grothendieck群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The algebraic theory of fuchsian singularties
This article has the following aims: (1) Extend the notion of fuchsian singularities (of first kind) to base fields of arbitrary characteristic. (2) Discuss their relationship to mathematical objects of a different nature. (3) Provide a purely ring-theoretic characterization of fuchsian singularities. (4) Expoloit their singularity categories and their Grothendieck groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信