G. Laudato, R. Oliveto, Simone Scalabrino, A. Colavita, L. D. Vito, F. Picariello, IOAN TUDOSA
{"title":"压缩心电信号中r峰出现的识别","authors":"G. Laudato, R. Oliveto, Simone Scalabrino, A. Colavita, L. D. Vito, F. Picariello, IOAN TUDOSA","doi":"10.1109/MeMeA49120.2020.9137207","DOIUrl":null,"url":null,"abstract":"Heart Rate (HR) is one of the mostly used electrocardiogram (ECG) feature in many automatic detectors of anomalies. This paper deals with a preliminary study on a novel approach which, through the combination of Machine Learning (ML) and Compressed Sensing (CS), aims at retrieving vital information from a digital compressed single-lead electrocardiogram (ECG) signal. As a potential key information to estimate the heart rate, this study focuses on the identification of R-peak occurrences. The study has been conducted on two different types of signal both obtained from the compressed samples provided by a CS algorithm, already available in literature. The results demonstrate that the use of CS in combination with a ML technique can find high competitiveness when compared to a state of the art method working on the uncompressed ECG signal.","PeriodicalId":152478,"journal":{"name":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Identification of R-peak occurrences in compressed ECG signals\",\"authors\":\"G. Laudato, R. Oliveto, Simone Scalabrino, A. Colavita, L. D. Vito, F. Picariello, IOAN TUDOSA\",\"doi\":\"10.1109/MeMeA49120.2020.9137207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart Rate (HR) is one of the mostly used electrocardiogram (ECG) feature in many automatic detectors of anomalies. This paper deals with a preliminary study on a novel approach which, through the combination of Machine Learning (ML) and Compressed Sensing (CS), aims at retrieving vital information from a digital compressed single-lead electrocardiogram (ECG) signal. As a potential key information to estimate the heart rate, this study focuses on the identification of R-peak occurrences. The study has been conducted on two different types of signal both obtained from the compressed samples provided by a CS algorithm, already available in literature. The results demonstrate that the use of CS in combination with a ML technique can find high competitiveness when compared to a state of the art method working on the uncompressed ECG signal.\",\"PeriodicalId\":152478,\"journal\":{\"name\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"03 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA49120.2020.9137207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA49120.2020.9137207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of R-peak occurrences in compressed ECG signals
Heart Rate (HR) is one of the mostly used electrocardiogram (ECG) feature in many automatic detectors of anomalies. This paper deals with a preliminary study on a novel approach which, through the combination of Machine Learning (ML) and Compressed Sensing (CS), aims at retrieving vital information from a digital compressed single-lead electrocardiogram (ECG) signal. As a potential key information to estimate the heart rate, this study focuses on the identification of R-peak occurrences. The study has been conducted on two different types of signal both obtained from the compressed samples provided by a CS algorithm, already available in literature. The results demonstrate that the use of CS in combination with a ML technique can find high competitiveness when compared to a state of the art method working on the uncompressed ECG signal.