{"title":"双有源桥式dc-dc变换器软开关性能分析","authors":"Zhiyu Shen, R. Burgos, D. Boroyevich, F. Wang","doi":"10.1109/ESTS.2009.4906533","DOIUrl":null,"url":null,"abstract":"This paper analyzes the ZVS soft-switching region of a DAB converter with arbitrary operating waveforms. The effect of the junction capacitor of the device and the magnetizing inductance of the transformer are also analyzed. Through the analysis, a group of waveforms for different loading conditions are identified to maximize the ZVS operating region. The results are verified by simulation using real device models.","PeriodicalId":446953,"journal":{"name":"2009 IEEE Electric Ship Technologies Symposium","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Soft-switching capability analysis of a dual active bridge dc-dc converter\",\"authors\":\"Zhiyu Shen, R. Burgos, D. Boroyevich, F. Wang\",\"doi\":\"10.1109/ESTS.2009.4906533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the ZVS soft-switching region of a DAB converter with arbitrary operating waveforms. The effect of the junction capacitor of the device and the magnetizing inductance of the transformer are also analyzed. Through the analysis, a group of waveforms for different loading conditions are identified to maximize the ZVS operating region. The results are verified by simulation using real device models.\",\"PeriodicalId\":446953,\"journal\":{\"name\":\"2009 IEEE Electric Ship Technologies Symposium\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Electric Ship Technologies Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTS.2009.4906533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Electric Ship Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTS.2009.4906533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Soft-switching capability analysis of a dual active bridge dc-dc converter
This paper analyzes the ZVS soft-switching region of a DAB converter with arbitrary operating waveforms. The effect of the junction capacitor of the device and the magnetizing inductance of the transformer are also analyzed. Through the analysis, a group of waveforms for different loading conditions are identified to maximize the ZVS operating region. The results are verified by simulation using real device models.