重新排序以重新识别人员

Vu-Hoang Nguyen, T. Ngo, Khang Nguyen, D. Duong, Kien Nguyen, Duy-Dinh Le
{"title":"重新排序以重新识别人员","authors":"Vu-Hoang Nguyen, T. Ngo, Khang Nguyen, D. Duong, Kien Nguyen, Duy-Dinh Le","doi":"10.1109/SOCPAR.2013.7054148","DOIUrl":null,"url":null,"abstract":"Person Re-Identification problem aims at matching people across a network of non-overlapping cameras. When multiple probe people appear concurrently, human could compare them together to give a more accurate matching. However, existing approaches treat each probe person independently, skipping the concurrent information. In this paper, we propose a re-ranking method which utilize that kind of information to refine ranked lists produced by any person re-identification method to create more precise ranked lists. The experimental results on VIPeR dataset show the improved performance when our method is applied.","PeriodicalId":315126,"journal":{"name":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Re-ranking for person re-identification\",\"authors\":\"Vu-Hoang Nguyen, T. Ngo, Khang Nguyen, D. Duong, Kien Nguyen, Duy-Dinh Le\",\"doi\":\"10.1109/SOCPAR.2013.7054148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Person Re-Identification problem aims at matching people across a network of non-overlapping cameras. When multiple probe people appear concurrently, human could compare them together to give a more accurate matching. However, existing approaches treat each probe person independently, skipping the concurrent information. In this paper, we propose a re-ranking method which utilize that kind of information to refine ranked lists produced by any person re-identification method to create more precise ranked lists. The experimental results on VIPeR dataset show the improved performance when our method is applied.\",\"PeriodicalId\":315126,\"journal\":{\"name\":\"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2013.7054148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2013.7054148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

人再识别问题的目标是在一个不重叠的摄像头网络中匹配人。当多个探测人同时出现时,人类可以将他们进行比较,从而给出更准确的匹配。然而,现有的方法对每个探测人都是独立处理的,忽略了并发信息。在本文中,我们提出了一种重新排名方法,该方法利用这种信息对任何人员再识别方法产生的排名列表进行细化,以创建更精确的排名列表。在VIPeR数据集上的实验结果表明,该方法的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Re-ranking for person re-identification
Person Re-Identification problem aims at matching people across a network of non-overlapping cameras. When multiple probe people appear concurrently, human could compare them together to give a more accurate matching. However, existing approaches treat each probe person independently, skipping the concurrent information. In this paper, we propose a re-ranking method which utilize that kind of information to refine ranked lists produced by any person re-identification method to create more precise ranked lists. The experimental results on VIPeR dataset show the improved performance when our method is applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信