J. Krása, D. Klír, K. Rezac, J. Cikhardt, A. Velyhan, M. Pfeifer, J. Dostál, M. Krůs, R. Dudzak, S. Buryšková, V. Nassisi, D. Delle Side
{"title":"目标电流:表征激光-物质相互作用动力学的适当参数","authors":"J. Krása, D. Klír, K. Rezac, J. Cikhardt, A. Velyhan, M. Pfeifer, J. Dostál, M. Krůs, R. Dudzak, S. Buryšková, V. Nassisi, D. Delle Side","doi":"10.1117/12.2520177","DOIUrl":null,"url":null,"abstract":"A resistive target probes were employed to obtain unique characteristics of the dynamic of the laser-matter interaction through the observation of a return current neutralizing the positive target charge caused by electrons definitely leaving the plasma. Experimental observations show that three phases of the laser-produced plasma are well recognized, i.e. the plasma ignition phase, active plasma phase, and afterglow phase already for the lowest laser intensity at the focal point of 108 Wcm-2 . Then, at higher intensities the first two phases strongly dominate and the target current reaches a value of 10 kA. A throughput of plasma barrier for the fastest electrons leaving the plasma is defined, and its value is experimentally estimated. We also present key experiments proving that the duration of the electrical charge on the target is much longer than the duration of the laser-plasma interaction for the entire intensity range.","PeriodicalId":375593,"journal":{"name":"Advanced High-Power Lasers and Applications","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Target current: an appropriate parameter for characterizing the dynamics of laser-matter interaction\",\"authors\":\"J. Krása, D. Klír, K. Rezac, J. Cikhardt, A. Velyhan, M. Pfeifer, J. Dostál, M. Krůs, R. Dudzak, S. Buryšková, V. Nassisi, D. Delle Side\",\"doi\":\"10.1117/12.2520177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A resistive target probes were employed to obtain unique characteristics of the dynamic of the laser-matter interaction through the observation of a return current neutralizing the positive target charge caused by electrons definitely leaving the plasma. Experimental observations show that three phases of the laser-produced plasma are well recognized, i.e. the plasma ignition phase, active plasma phase, and afterglow phase already for the lowest laser intensity at the focal point of 108 Wcm-2 . Then, at higher intensities the first two phases strongly dominate and the target current reaches a value of 10 kA. A throughput of plasma barrier for the fastest electrons leaving the plasma is defined, and its value is experimentally estimated. We also present key experiments proving that the duration of the electrical charge on the target is much longer than the duration of the laser-plasma interaction for the entire intensity range.\",\"PeriodicalId\":375593,\"journal\":{\"name\":\"Advanced High-Power Lasers and Applications\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced High-Power Lasers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2520177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced High-Power Lasers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2520177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Target current: an appropriate parameter for characterizing the dynamics of laser-matter interaction
A resistive target probes were employed to obtain unique characteristics of the dynamic of the laser-matter interaction through the observation of a return current neutralizing the positive target charge caused by electrons definitely leaving the plasma. Experimental observations show that three phases of the laser-produced plasma are well recognized, i.e. the plasma ignition phase, active plasma phase, and afterglow phase already for the lowest laser intensity at the focal point of 108 Wcm-2 . Then, at higher intensities the first two phases strongly dominate and the target current reaches a value of 10 kA. A throughput of plasma barrier for the fastest electrons leaving the plasma is defined, and its value is experimentally estimated. We also present key experiments proving that the duration of the electrical charge on the target is much longer than the duration of the laser-plasma interaction for the entire intensity range.