眼部疾病诊断的最优特征选择与提取

P. Alli, S. Somasundaram
{"title":"眼部疾病诊断的最优特征选择与提取","authors":"P. Alli, S. Somasundaram","doi":"10.4018/978-1-5225-5876-7.CH005","DOIUrl":null,"url":null,"abstract":"Ophthalmologists utilize retinal fundus images of humans for the detection, diagnosis, and prediction of many eye diseases. Automatic scrutiny of fundus images are foremost apprehension for ophthalmologists and investigators. The manual recognition of blood vessels is most deceptive because the blood vessels in a fundus image are multifaceted and with low contrast. Unearthing of blood vessels proffers information on pathological transformation and can smooth the progress of rating diseases severity or mechanically diagnosing the diseases. The manual recognition method turns out to be annoying. Consequently, the automatic recognition of blood vessels is also more significant. For extracting the vessel in fundus images unswerving and habitual methods are obligatory. The proposed methodology is designed to effectively diagnose the eye disease by performing feature extraction succeeded by feature selection and to improve the performance factors such as feature extraction ratio, feature selection time, sensitivity, and specificity when compared to the state-of-art methods.","PeriodicalId":358840,"journal":{"name":"Medical Image Processing for Improved Clinical Diagnosis","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Feature Selection and Extraction for Eye Disease Diagnosis\",\"authors\":\"P. Alli, S. Somasundaram\",\"doi\":\"10.4018/978-1-5225-5876-7.CH005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ophthalmologists utilize retinal fundus images of humans for the detection, diagnosis, and prediction of many eye diseases. Automatic scrutiny of fundus images are foremost apprehension for ophthalmologists and investigators. The manual recognition of blood vessels is most deceptive because the blood vessels in a fundus image are multifaceted and with low contrast. Unearthing of blood vessels proffers information on pathological transformation and can smooth the progress of rating diseases severity or mechanically diagnosing the diseases. The manual recognition method turns out to be annoying. Consequently, the automatic recognition of blood vessels is also more significant. For extracting the vessel in fundus images unswerving and habitual methods are obligatory. The proposed methodology is designed to effectively diagnose the eye disease by performing feature extraction succeeded by feature selection and to improve the performance factors such as feature extraction ratio, feature selection time, sensitivity, and specificity when compared to the state-of-art methods.\",\"PeriodicalId\":358840,\"journal\":{\"name\":\"Medical Image Processing for Improved Clinical Diagnosis\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Image Processing for Improved Clinical Diagnosis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-5876-7.CH005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Image Processing for Improved Clinical Diagnosis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-5876-7.CH005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

眼科医生利用人类视网膜眼底图像来检测、诊断和预测许多眼病。眼底图像的自动检查是眼科医生和研究人员最关心的问题。人工血管识别最具欺骗性,因为眼底图像中的血管是多面性的,对比度低。血管的发现提供了病理转化的信息,可以顺利地评定疾病的严重程度或机械地诊断疾病。人工识别方法很烦人。因此,血管的自动识别也更为重要。对于眼底图像中血管的提取,必须坚持惯用的方法。该方法旨在通过特征提取后再进行特征选择来有效地诊断眼部疾病,并与现有方法相比,提高了特征提取率、特征选择时间、灵敏度和特异性等性能因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Feature Selection and Extraction for Eye Disease Diagnosis
Ophthalmologists utilize retinal fundus images of humans for the detection, diagnosis, and prediction of many eye diseases. Automatic scrutiny of fundus images are foremost apprehension for ophthalmologists and investigators. The manual recognition of blood vessels is most deceptive because the blood vessels in a fundus image are multifaceted and with low contrast. Unearthing of blood vessels proffers information on pathological transformation and can smooth the progress of rating diseases severity or mechanically diagnosing the diseases. The manual recognition method turns out to be annoying. Consequently, the automatic recognition of blood vessels is also more significant. For extracting the vessel in fundus images unswerving and habitual methods are obligatory. The proposed methodology is designed to effectively diagnose the eye disease by performing feature extraction succeeded by feature selection and to improve the performance factors such as feature extraction ratio, feature selection time, sensitivity, and specificity when compared to the state-of-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信