Sando搜索工具是如何推荐查询的

Xi Ge, D. Shepherd, Kostadin Damevski, E. Murphy-Hill
{"title":"Sando搜索工具是如何推荐查询的","authors":"Xi Ge, D. Shepherd, Kostadin Damevski, E. Murphy-Hill","doi":"10.1109/CSMR-WCRE.2014.6747210","DOIUrl":null,"url":null,"abstract":"Developers spend a significant amount of time searching their local codebase. To help them search efficiently, researchers have proposed novel tools that apply state-of-the-art information retrieval algorithms to retrieve relevant code snippets from the local codebase. However, these tools still rely on the developer to craft an effective query, which requires that the developer is familiar with the terms contained in the related code snippets. Our empirical data from a state-of-the-art local code search tool, called Sando, suggests that developers are sometimes unacquainted with their local codebase. In order to bridge the gap between developers and their ever-increasing local codebase, in this paper we demonstrate the recommendation techniques integrated in Sando.","PeriodicalId":166271,"journal":{"name":"2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"How the Sando search tool recommends queries\",\"authors\":\"Xi Ge, D. Shepherd, Kostadin Damevski, E. Murphy-Hill\",\"doi\":\"10.1109/CSMR-WCRE.2014.6747210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developers spend a significant amount of time searching their local codebase. To help them search efficiently, researchers have proposed novel tools that apply state-of-the-art information retrieval algorithms to retrieve relevant code snippets from the local codebase. However, these tools still rely on the developer to craft an effective query, which requires that the developer is familiar with the terms contained in the related code snippets. Our empirical data from a state-of-the-art local code search tool, called Sando, suggests that developers are sometimes unacquainted with their local codebase. In order to bridge the gap between developers and their ever-increasing local codebase, in this paper we demonstrate the recommendation techniques integrated in Sando.\",\"PeriodicalId\":166271,\"journal\":{\"name\":\"2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSMR-WCRE.2014.6747210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSMR-WCRE.2014.6747210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

开发人员花费大量时间搜索本地代码库。为了帮助他们有效地搜索,研究人员提出了新的工具,应用最先进的信息检索算法从本地代码库检索相关代码片段。然而,这些工具仍然依赖于开发人员来制作有效的查询,这要求开发人员熟悉相关代码片段中包含的术语。我们从最先进的本地代码搜索工具(称为Sando)获得的经验数据表明,开发人员有时不熟悉他们的本地代码库。为了弥合开发人员和他们不断增加的本地代码库之间的差距,在本文中,我们演示了集成在Sando中的推荐技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How the Sando search tool recommends queries
Developers spend a significant amount of time searching their local codebase. To help them search efficiently, researchers have proposed novel tools that apply state-of-the-art information retrieval algorithms to retrieve relevant code snippets from the local codebase. However, these tools still rely on the developer to craft an effective query, which requires that the developer is familiar with the terms contained in the related code snippets. Our empirical data from a state-of-the-art local code search tool, called Sando, suggests that developers are sometimes unacquainted with their local codebase. In order to bridge the gap between developers and their ever-increasing local codebase, in this paper we demonstrate the recommendation techniques integrated in Sando.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信