{"title":"基于深度学习的牛图像无监督分割","authors":"Vinícius Guardieiro Sousa, A. Backes","doi":"10.5753/wvc.2021.18886","DOIUrl":null,"url":null,"abstract":"In this work, we used the Deep Learning (DL) architecture named U-Net to segment images containing side view cattle. We evaluated the ability of the U-Net to segment images captured with different backgrounds and from the different breeds, both acquired by us and from the Internet. Since cattle images present a more constant background than other applications, we also evaluated the performance of the U-Net when we change the numbers of convolutional blocks and filters. Results show that U-Net can be used to segment cattle images using fewer blocks and filters than traditional U-Net and that the number of blocks is more important than the total number of filters used.","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised Segmentation of Cattle Images Using Deep Learning\",\"authors\":\"Vinícius Guardieiro Sousa, A. Backes\",\"doi\":\"10.5753/wvc.2021.18886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we used the Deep Learning (DL) architecture named U-Net to segment images containing side view cattle. We evaluated the ability of the U-Net to segment images captured with different backgrounds and from the different breeds, both acquired by us and from the Internet. Since cattle images present a more constant background than other applications, we also evaluated the performance of the U-Net when we change the numbers of convolutional blocks and filters. Results show that U-Net can be used to segment cattle images using fewer blocks and filters than traditional U-Net and that the number of blocks is more important than the total number of filters used.\",\"PeriodicalId\":311431,\"journal\":{\"name\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wvc.2021.18886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised Segmentation of Cattle Images Using Deep Learning
In this work, we used the Deep Learning (DL) architecture named U-Net to segment images containing side view cattle. We evaluated the ability of the U-Net to segment images captured with different backgrounds and from the different breeds, both acquired by us and from the Internet. Since cattle images present a more constant background than other applications, we also evaluated the performance of the U-Net when we change the numbers of convolutional blocks and filters. Results show that U-Net can be used to segment cattle images using fewer blocks and filters than traditional U-Net and that the number of blocks is more important than the total number of filters used.