Ayad Al-Mahturi, Fendy Santoso, M. Garratt, S. Anavatti
{"title":"基于递推区间2型TS模糊c均值聚类的非线性不确定动力系统在线辨识","authors":"Ayad Al-Mahturi, Fendy Santoso, M. Garratt, S. Anavatti","doi":"10.1109/SSCI47803.2020.9308202","DOIUrl":null,"url":null,"abstract":"This paper presents a novel online system identification technique based on a recursive interval type-2 Takagi-Sugeno fuzzy C-means clustering technique (IT2-TS-FC) for modeling nonlinear uncertain dynamics of autonomous systems. The construction of the fuzzy antecedent parameters is based on the type-2 fuzzy C-means clustering (IT2FCM) technique, while the Weighted Least Square (WLS) algorithm is utilized to determine the upper and lower fuzzy consequent parameters. Moreover, a scaling factor to represent the footprint of uncertainties (FoU) is introduced to convert type-l and type2 fuzzy systems. The efficiency of our proposed algorithm has been validated using two benchmark system datasets, flight test data from a quadcopter and Mackey-Glass time series data. We also compare our proposed technique with a type-l fuzzy Cmeans technique. The robustness of our proposed identification is investigated by means of a noisy dataset.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Online System Identification for Nonlinear Uncertain Dynamical Systems Using Recursive Interval Type-2 TS Fuzzy C-means Clustering\",\"authors\":\"Ayad Al-Mahturi, Fendy Santoso, M. Garratt, S. Anavatti\",\"doi\":\"10.1109/SSCI47803.2020.9308202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel online system identification technique based on a recursive interval type-2 Takagi-Sugeno fuzzy C-means clustering technique (IT2-TS-FC) for modeling nonlinear uncertain dynamics of autonomous systems. The construction of the fuzzy antecedent parameters is based on the type-2 fuzzy C-means clustering (IT2FCM) technique, while the Weighted Least Square (WLS) algorithm is utilized to determine the upper and lower fuzzy consequent parameters. Moreover, a scaling factor to represent the footprint of uncertainties (FoU) is introduced to convert type-l and type2 fuzzy systems. The efficiency of our proposed algorithm has been validated using two benchmark system datasets, flight test data from a quadcopter and Mackey-Glass time series data. We also compare our proposed technique with a type-l fuzzy Cmeans technique. The robustness of our proposed identification is investigated by means of a noisy dataset.\",\"PeriodicalId\":413489,\"journal\":{\"name\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI47803.2020.9308202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online System Identification for Nonlinear Uncertain Dynamical Systems Using Recursive Interval Type-2 TS Fuzzy C-means Clustering
This paper presents a novel online system identification technique based on a recursive interval type-2 Takagi-Sugeno fuzzy C-means clustering technique (IT2-TS-FC) for modeling nonlinear uncertain dynamics of autonomous systems. The construction of the fuzzy antecedent parameters is based on the type-2 fuzzy C-means clustering (IT2FCM) technique, while the Weighted Least Square (WLS) algorithm is utilized to determine the upper and lower fuzzy consequent parameters. Moreover, a scaling factor to represent the footprint of uncertainties (FoU) is introduced to convert type-l and type2 fuzzy systems. The efficiency of our proposed algorithm has been validated using two benchmark system datasets, flight test data from a quadcopter and Mackey-Glass time series data. We also compare our proposed technique with a type-l fuzzy Cmeans technique. The robustness of our proposed identification is investigated by means of a noisy dataset.