基于递推区间2型TS模糊c均值聚类的非线性不确定动力系统在线辨识

Ayad Al-Mahturi, Fendy Santoso, M. Garratt, S. Anavatti
{"title":"基于递推区间2型TS模糊c均值聚类的非线性不确定动力系统在线辨识","authors":"Ayad Al-Mahturi, Fendy Santoso, M. Garratt, S. Anavatti","doi":"10.1109/SSCI47803.2020.9308202","DOIUrl":null,"url":null,"abstract":"This paper presents a novel online system identification technique based on a recursive interval type-2 Takagi-Sugeno fuzzy C-means clustering technique (IT2-TS-FC) for modeling nonlinear uncertain dynamics of autonomous systems. The construction of the fuzzy antecedent parameters is based on the type-2 fuzzy C-means clustering (IT2FCM) technique, while the Weighted Least Square (WLS) algorithm is utilized to determine the upper and lower fuzzy consequent parameters. Moreover, a scaling factor to represent the footprint of uncertainties (FoU) is introduced to convert type-l and type2 fuzzy systems. The efficiency of our proposed algorithm has been validated using two benchmark system datasets, flight test data from a quadcopter and Mackey-Glass time series data. We also compare our proposed technique with a type-l fuzzy Cmeans technique. The robustness of our proposed identification is investigated by means of a noisy dataset.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Online System Identification for Nonlinear Uncertain Dynamical Systems Using Recursive Interval Type-2 TS Fuzzy C-means Clustering\",\"authors\":\"Ayad Al-Mahturi, Fendy Santoso, M. Garratt, S. Anavatti\",\"doi\":\"10.1109/SSCI47803.2020.9308202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel online system identification technique based on a recursive interval type-2 Takagi-Sugeno fuzzy C-means clustering technique (IT2-TS-FC) for modeling nonlinear uncertain dynamics of autonomous systems. The construction of the fuzzy antecedent parameters is based on the type-2 fuzzy C-means clustering (IT2FCM) technique, while the Weighted Least Square (WLS) algorithm is utilized to determine the upper and lower fuzzy consequent parameters. Moreover, a scaling factor to represent the footprint of uncertainties (FoU) is introduced to convert type-l and type2 fuzzy systems. The efficiency of our proposed algorithm has been validated using two benchmark system datasets, flight test data from a quadcopter and Mackey-Glass time series data. We also compare our proposed technique with a type-l fuzzy Cmeans technique. The robustness of our proposed identification is investigated by means of a noisy dataset.\",\"PeriodicalId\":413489,\"journal\":{\"name\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI47803.2020.9308202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于递归区间type-2 Takagi-Sugeno模糊c均值聚类技术(IT2-TS-FC)的在线系统辨识方法,用于建模自治系统的非线性不确定动力学。模糊前项参数的构建基于2型模糊c均值聚类(IT2FCM)技术,而模糊后项参数的上下参数的确定则采用加权最小二乘(WLS)算法。此外,还引入了一个表示不确定性足迹(FoU)的比例因子来转换1型和2型模糊系统。我们提出的算法的效率已经通过两个基准系统数据集验证,来自四轴飞行器的飞行测试数据和Mackey-Glass时间序列数据。我们还将我们提出的技术与1型模糊均值技术进行了比较。我们提出的识别的鲁棒性是通过一个有噪声的数据集来研究的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online System Identification for Nonlinear Uncertain Dynamical Systems Using Recursive Interval Type-2 TS Fuzzy C-means Clustering
This paper presents a novel online system identification technique based on a recursive interval type-2 Takagi-Sugeno fuzzy C-means clustering technique (IT2-TS-FC) for modeling nonlinear uncertain dynamics of autonomous systems. The construction of the fuzzy antecedent parameters is based on the type-2 fuzzy C-means clustering (IT2FCM) technique, while the Weighted Least Square (WLS) algorithm is utilized to determine the upper and lower fuzzy consequent parameters. Moreover, a scaling factor to represent the footprint of uncertainties (FoU) is introduced to convert type-l and type2 fuzzy systems. The efficiency of our proposed algorithm has been validated using two benchmark system datasets, flight test data from a quadcopter and Mackey-Glass time series data. We also compare our proposed technique with a type-l fuzzy Cmeans technique. The robustness of our proposed identification is investigated by means of a noisy dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信