地理集中度指数与数据聚合的检验

E. Auvray, Salima Bouayad-Agha
{"title":"地理集中度指数与数据聚合的检验","authors":"E. Auvray, Salima Bouayad-Agha","doi":"10.3917/ecop.216.0002","DOIUrl":null,"url":null,"abstract":"To characterise the spatial concentration of economic activities, reliable statistical measures are needed. This allows assessment of existing disparities and comparison of concentration levels by sector in time and space. Space is continuous but its discretisation due to spatial grouping of observations at different geographical scales (municipalities, d?partements, regions) can induce a measurement error (Briant et alii, 2010), thus affecting the representation of the concentration. Since it is not always possible to utilise the exact position of the entities, this work proposes to study, from simulated data, the extent to which the most commonly used indices of geographic concentration of activities can be biased by geographical aggregation. We show that index values are sensitive to the geographical scale on which they are calculated and that some indices are more robust than others to geographic aggregation.","PeriodicalId":141680,"journal":{"name":"Économie & prévision","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Les indices de concentration géographique à l’épreuve de l’agrégation des données\",\"authors\":\"E. Auvray, Salima Bouayad-Agha\",\"doi\":\"10.3917/ecop.216.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To characterise the spatial concentration of economic activities, reliable statistical measures are needed. This allows assessment of existing disparities and comparison of concentration levels by sector in time and space. Space is continuous but its discretisation due to spatial grouping of observations at different geographical scales (municipalities, d?partements, regions) can induce a measurement error (Briant et alii, 2010), thus affecting the representation of the concentration. Since it is not always possible to utilise the exact position of the entities, this work proposes to study, from simulated data, the extent to which the most commonly used indices of geographic concentration of activities can be biased by geographical aggregation. We show that index values are sensitive to the geographical scale on which they are calculated and that some indices are more robust than others to geographic aggregation.\",\"PeriodicalId\":141680,\"journal\":{\"name\":\"Économie & prévision\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Économie & prévision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3917/ecop.216.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Économie & prévision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3917/ecop.216.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了描述经济活动的空间集中,需要可靠的统计措施。这样就可以在时间和空间上评估现有的差距和按部门比较集中程度。空间是连续的,但由于不同地理尺度(直辖市,d?部分,地区)会引起测量误差(Briant et alii, 2010),从而影响浓度的表示。由于不可能总是利用实体的确切位置,因此这项工作建议从模拟数据中研究最常用的地理活动集中指数在多大程度上可能受到地理聚集的影响。我们发现指标值对其计算的地理尺度敏感,并且一些指数对地理聚集的鲁棒性比其他指数更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Les indices de concentration géographique à l’épreuve de l’agrégation des données
To characterise the spatial concentration of economic activities, reliable statistical measures are needed. This allows assessment of existing disparities and comparison of concentration levels by sector in time and space. Space is continuous but its discretisation due to spatial grouping of observations at different geographical scales (municipalities, d?partements, regions) can induce a measurement error (Briant et alii, 2010), thus affecting the representation of the concentration. Since it is not always possible to utilise the exact position of the entities, this work proposes to study, from simulated data, the extent to which the most commonly used indices of geographic concentration of activities can be biased by geographical aggregation. We show that index values are sensitive to the geographical scale on which they are calculated and that some indices are more robust than others to geographic aggregation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信