{"title":"移动6TiSCH网络流量感知TSCH调度的设计与优化","authors":"Omid Tavallaie, J. Taheri, Albert Y. Zomaya","doi":"10.1145/3450268.3453523","DOIUrl":null,"url":null,"abstract":"Time-Slotted Channel Hopping (TSCH) is a medium access control technology defined by the IEEE 802.15.4e standard to address reliability and timeliness requirements of low-power Internet of Things (IoT) applications. Based on a communication schedule, TSCH exploits time-synchronization combined with frequency channel hopping to cope with wireless interference and multi-path fading. While standards define mechanisms for the basic configuration and communication of TSCH nodes, computing and adapting a schedule to the network and traffic dynamics are left as open research problems. In this paper, we propose a novel Distributed Traffic-aware Scheduling Function (DT-SF) for mobile IoT networks. DT-SF dynamically adapts the TSCH schedule to the changes of the traffic and the network topology. It estimates the node mobility by using a new lightweight approach and monitors the queue backlog to balance the traffic loads of children nodes. We model allocating TSCH timeslots to one-hop neighbors as a Mixed-Integer Convex Programming (MICP) problem which is solved by using the method of Lagrange multipliers and the Branch-and-Bound algorithm. We implement DT-SF on Zolerita Firefly IoT motes and the Contiki operating system to evaluate its performance on the testbed with 18 nodes. Evaluation results show that DT-SF improves the packet delivery ratio by up to 52% compared to the state-of-the-art method.","PeriodicalId":130134,"journal":{"name":"Proceedings of the International Conference on Internet-of-Things Design and Implementation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Design and Optimization of Traffic-Aware TSCH Scheduling for Mobile 6TiSCH Networks\",\"authors\":\"Omid Tavallaie, J. Taheri, Albert Y. Zomaya\",\"doi\":\"10.1145/3450268.3453523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-Slotted Channel Hopping (TSCH) is a medium access control technology defined by the IEEE 802.15.4e standard to address reliability and timeliness requirements of low-power Internet of Things (IoT) applications. Based on a communication schedule, TSCH exploits time-synchronization combined with frequency channel hopping to cope with wireless interference and multi-path fading. While standards define mechanisms for the basic configuration and communication of TSCH nodes, computing and adapting a schedule to the network and traffic dynamics are left as open research problems. In this paper, we propose a novel Distributed Traffic-aware Scheduling Function (DT-SF) for mobile IoT networks. DT-SF dynamically adapts the TSCH schedule to the changes of the traffic and the network topology. It estimates the node mobility by using a new lightweight approach and monitors the queue backlog to balance the traffic loads of children nodes. We model allocating TSCH timeslots to one-hop neighbors as a Mixed-Integer Convex Programming (MICP) problem which is solved by using the method of Lagrange multipliers and the Branch-and-Bound algorithm. We implement DT-SF on Zolerita Firefly IoT motes and the Contiki operating system to evaluate its performance on the testbed with 18 nodes. Evaluation results show that DT-SF improves the packet delivery ratio by up to 52% compared to the state-of-the-art method.\",\"PeriodicalId\":130134,\"journal\":{\"name\":\"Proceedings of the International Conference on Internet-of-Things Design and Implementation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Internet-of-Things Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3450268.3453523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Internet-of-Things Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3450268.3453523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Optimization of Traffic-Aware TSCH Scheduling for Mobile 6TiSCH Networks
Time-Slotted Channel Hopping (TSCH) is a medium access control technology defined by the IEEE 802.15.4e standard to address reliability and timeliness requirements of low-power Internet of Things (IoT) applications. Based on a communication schedule, TSCH exploits time-synchronization combined with frequency channel hopping to cope with wireless interference and multi-path fading. While standards define mechanisms for the basic configuration and communication of TSCH nodes, computing and adapting a schedule to the network and traffic dynamics are left as open research problems. In this paper, we propose a novel Distributed Traffic-aware Scheduling Function (DT-SF) for mobile IoT networks. DT-SF dynamically adapts the TSCH schedule to the changes of the traffic and the network topology. It estimates the node mobility by using a new lightweight approach and monitors the queue backlog to balance the traffic loads of children nodes. We model allocating TSCH timeslots to one-hop neighbors as a Mixed-Integer Convex Programming (MICP) problem which is solved by using the method of Lagrange multipliers and the Branch-and-Bound algorithm. We implement DT-SF on Zolerita Firefly IoT motes and the Contiki operating system to evaluate its performance on the testbed with 18 nodes. Evaluation results show that DT-SF improves the packet delivery ratio by up to 52% compared to the state-of-the-art method.