移动6TiSCH网络流量感知TSCH调度的设计与优化

Omid Tavallaie, J. Taheri, Albert Y. Zomaya
{"title":"移动6TiSCH网络流量感知TSCH调度的设计与优化","authors":"Omid Tavallaie, J. Taheri, Albert Y. Zomaya","doi":"10.1145/3450268.3453523","DOIUrl":null,"url":null,"abstract":"Time-Slotted Channel Hopping (TSCH) is a medium access control technology defined by the IEEE 802.15.4e standard to address reliability and timeliness requirements of low-power Internet of Things (IoT) applications. Based on a communication schedule, TSCH exploits time-synchronization combined with frequency channel hopping to cope with wireless interference and multi-path fading. While standards define mechanisms for the basic configuration and communication of TSCH nodes, computing and adapting a schedule to the network and traffic dynamics are left as open research problems. In this paper, we propose a novel Distributed Traffic-aware Scheduling Function (DT-SF) for mobile IoT networks. DT-SF dynamically adapts the TSCH schedule to the changes of the traffic and the network topology. It estimates the node mobility by using a new lightweight approach and monitors the queue backlog to balance the traffic loads of children nodes. We model allocating TSCH timeslots to one-hop neighbors as a Mixed-Integer Convex Programming (MICP) problem which is solved by using the method of Lagrange multipliers and the Branch-and-Bound algorithm. We implement DT-SF on Zolerita Firefly IoT motes and the Contiki operating system to evaluate its performance on the testbed with 18 nodes. Evaluation results show that DT-SF improves the packet delivery ratio by up to 52% compared to the state-of-the-art method.","PeriodicalId":130134,"journal":{"name":"Proceedings of the International Conference on Internet-of-Things Design and Implementation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Design and Optimization of Traffic-Aware TSCH Scheduling for Mobile 6TiSCH Networks\",\"authors\":\"Omid Tavallaie, J. Taheri, Albert Y. Zomaya\",\"doi\":\"10.1145/3450268.3453523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-Slotted Channel Hopping (TSCH) is a medium access control technology defined by the IEEE 802.15.4e standard to address reliability and timeliness requirements of low-power Internet of Things (IoT) applications. Based on a communication schedule, TSCH exploits time-synchronization combined with frequency channel hopping to cope with wireless interference and multi-path fading. While standards define mechanisms for the basic configuration and communication of TSCH nodes, computing and adapting a schedule to the network and traffic dynamics are left as open research problems. In this paper, we propose a novel Distributed Traffic-aware Scheduling Function (DT-SF) for mobile IoT networks. DT-SF dynamically adapts the TSCH schedule to the changes of the traffic and the network topology. It estimates the node mobility by using a new lightweight approach and monitors the queue backlog to balance the traffic loads of children nodes. We model allocating TSCH timeslots to one-hop neighbors as a Mixed-Integer Convex Programming (MICP) problem which is solved by using the method of Lagrange multipliers and the Branch-and-Bound algorithm. We implement DT-SF on Zolerita Firefly IoT motes and the Contiki operating system to evaluate its performance on the testbed with 18 nodes. Evaluation results show that DT-SF improves the packet delivery ratio by up to 52% compared to the state-of-the-art method.\",\"PeriodicalId\":130134,\"journal\":{\"name\":\"Proceedings of the International Conference on Internet-of-Things Design and Implementation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Internet-of-Things Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3450268.3453523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Internet-of-Things Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3450268.3453523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

时隙信道跳频(TSCH)是IEEE 802.15.4e标准定义的一种介质访问控制技术,旨在满足低功耗物联网(IoT)应用对可靠性和时效性的要求。TSCH基于通信调度,利用时间同步和信道跳频技术来应对无线干扰和多径衰落。虽然标准定义了TSCH节点的基本配置和通信机制,但计算和调整时间表以适应网络和流量动态仍然是开放的研究问题。在本文中,我们提出了一种新的分布式流量感知调度函数(DT-SF)用于移动物联网网络。DT-SF根据流量和网络拓扑的变化动态调整TSCH调度。它通过使用一种新的轻量级方法来估计节点的移动性,并监控队列积压以平衡子节点的流量负载。我们将TSCH时隙分配建模为一个混合整数凸规划(MICP)问题,并利用拉格朗日乘子方法和分支定界算法进行求解。我们在Zolerita Firefly IoT motes和Contiki操作系统上实现DT-SF,在18个节点的测试台上评估其性能。评估结果表明,与最先进的方法相比,DT-SF将分组投递率提高了52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Optimization of Traffic-Aware TSCH Scheduling for Mobile 6TiSCH Networks
Time-Slotted Channel Hopping (TSCH) is a medium access control technology defined by the IEEE 802.15.4e standard to address reliability and timeliness requirements of low-power Internet of Things (IoT) applications. Based on a communication schedule, TSCH exploits time-synchronization combined with frequency channel hopping to cope with wireless interference and multi-path fading. While standards define mechanisms for the basic configuration and communication of TSCH nodes, computing and adapting a schedule to the network and traffic dynamics are left as open research problems. In this paper, we propose a novel Distributed Traffic-aware Scheduling Function (DT-SF) for mobile IoT networks. DT-SF dynamically adapts the TSCH schedule to the changes of the traffic and the network topology. It estimates the node mobility by using a new lightweight approach and monitors the queue backlog to balance the traffic loads of children nodes. We model allocating TSCH timeslots to one-hop neighbors as a Mixed-Integer Convex Programming (MICP) problem which is solved by using the method of Lagrange multipliers and the Branch-and-Bound algorithm. We implement DT-SF on Zolerita Firefly IoT motes and the Contiki operating system to evaluate its performance on the testbed with 18 nodes. Evaluation results show that DT-SF improves the packet delivery ratio by up to 52% compared to the state-of-the-art method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信