{"title":"Rost的动机和H90","authors":"C. Haesemeyer, C. Weibel","doi":"10.2307/j.ctv941tx2.9","DOIUrl":null,"url":null,"abstract":"This chapter introduces the notion of a Rost motive, which is a summand of the motive of a Rost variety 𝑋. It highlights the theorem that, assuming that Rost motives exist and H90(n − 1) holds, then 𝐻𝑛+1\n ét(𝑘, ℤ(𝑛)) injects into 𝐻𝑛+1\n ét(𝑘(𝑋), ℤ(𝑛)). While there may be many Rost varieties associated to a given symbol, there is essentially only one Rost motive. The Rost motive captures the part of the cohomology of a Rost variety 𝑋. Since a Rost motive is a special kind of symmetric Chow motive, the chapter begins by recalling what this means. It then introduces the notion of 𝔛-duality. This duality plays an important role in the axioms defining Rost motives, as well as a role in the construction of the Rost motive in the next chapter. Finally, this chapter assumes that Rost motives exist and proves a key theorem.","PeriodicalId":145287,"journal":{"name":"The Norm Residue Theorem in Motivic Cohomology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rost Motives and H90\",\"authors\":\"C. Haesemeyer, C. Weibel\",\"doi\":\"10.2307/j.ctv941tx2.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter introduces the notion of a Rost motive, which is a summand of the motive of a Rost variety 𝑋. It highlights the theorem that, assuming that Rost motives exist and H90(n − 1) holds, then 𝐻𝑛+1\\n ét(𝑘, ℤ(𝑛)) injects into 𝐻𝑛+1\\n ét(𝑘(𝑋), ℤ(𝑛)). While there may be many Rost varieties associated to a given symbol, there is essentially only one Rost motive. The Rost motive captures the part of the cohomology of a Rost variety 𝑋. Since a Rost motive is a special kind of symmetric Chow motive, the chapter begins by recalling what this means. It then introduces the notion of 𝔛-duality. This duality plays an important role in the axioms defining Rost motives, as well as a role in the construction of the Rost motive in the next chapter. Finally, this chapter assumes that Rost motives exist and proves a key theorem.\",\"PeriodicalId\":145287,\"journal\":{\"name\":\"The Norm Residue Theorem in Motivic Cohomology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Norm Residue Theorem in Motivic Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctv941tx2.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Norm Residue Theorem in Motivic Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv941tx2.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter introduces the notion of a Rost motive, which is a summand of the motive of a Rost variety 𝑋. It highlights the theorem that, assuming that Rost motives exist and H90(n − 1) holds, then 𝐻𝑛+1
ét(𝑘, ℤ(𝑛)) injects into 𝐻𝑛+1
ét(𝑘(𝑋), ℤ(𝑛)). While there may be many Rost varieties associated to a given symbol, there is essentially only one Rost motive. The Rost motive captures the part of the cohomology of a Rost variety 𝑋. Since a Rost motive is a special kind of symmetric Chow motive, the chapter begins by recalling what this means. It then introduces the notion of 𝔛-duality. This duality plays an important role in the axioms defining Rost motives, as well as a role in the construction of the Rost motive in the next chapter. Finally, this chapter assumes that Rost motives exist and proves a key theorem.