基于卷积神经网络的线性阵列三维SAR稀疏成像

Mou Wang, Shunjun Wei, Jun Shi, Yue Wu, Jiadian Liang, Qizhe Qu
{"title":"基于卷积神经网络的线性阵列三维SAR稀疏成像","authors":"Mou Wang, Shunjun Wei, Jun Shi, Yue Wu, Jiadian Liang, Qizhe Qu","doi":"10.1109/IGARSS39084.2020.9324030","DOIUrl":null,"url":null,"abstract":"Compressed sensing theory has attracted extensive attention in the field of linear array 3-D Synthetic Aperture Radar (SAR) sparse imaging. However, conventional CS-based algorithms always suffer from quite huge computational cost. In this paper, we propose a new method for 3-D SAR sparse imaging based on convolutional neural network (CNN). Inspired by the work of ISTA-NET, a complex-valued version for imaging tasks is modified. Furthermore, we introduce a approximate phase correction scheme for 3-D imaging, it makes the proposed method works with only a constant measurement matrix corresponding to any slice. Moreover, Using a random training strategy, ISTA-NET networks for 3-D SAR imaging are effectively trained. Experimental results demonstrate that the proposed method outperforms conventional ISTA large margins in both accuracy and speed.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear Array 3-D SAR Sparse Imaging via Convolutional Neural Network\",\"authors\":\"Mou Wang, Shunjun Wei, Jun Shi, Yue Wu, Jiadian Liang, Qizhe Qu\",\"doi\":\"10.1109/IGARSS39084.2020.9324030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing theory has attracted extensive attention in the field of linear array 3-D Synthetic Aperture Radar (SAR) sparse imaging. However, conventional CS-based algorithms always suffer from quite huge computational cost. In this paper, we propose a new method for 3-D SAR sparse imaging based on convolutional neural network (CNN). Inspired by the work of ISTA-NET, a complex-valued version for imaging tasks is modified. Furthermore, we introduce a approximate phase correction scheme for 3-D imaging, it makes the proposed method works with only a constant measurement matrix corresponding to any slice. Moreover, Using a random training strategy, ISTA-NET networks for 3-D SAR imaging are effectively trained. Experimental results demonstrate that the proposed method outperforms conventional ISTA large margins in both accuracy and speed.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9324030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9324030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

压缩感知理论在线阵三维合成孔径雷达(SAR)稀疏成像领域受到了广泛关注。然而,传统的基于cs的算法计算量非常大。本文提出了一种基于卷积神经网络(CNN)的三维SAR稀疏成像方法。受ISTA-NET工作的启发,对成像任务的复杂值版本进行了修改。此外,我们还引入了一种用于三维成像的近似相位校正方案,使得该方法只适用于任意切片对应的恒定测量矩阵。此外,采用随机训练策略,有效地训练了用于三维SAR成像的sta - net网络。实验结果表明,该方法在精度和速度上都优于传统的ISTA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Array 3-D SAR Sparse Imaging via Convolutional Neural Network
Compressed sensing theory has attracted extensive attention in the field of linear array 3-D Synthetic Aperture Radar (SAR) sparse imaging. However, conventional CS-based algorithms always suffer from quite huge computational cost. In this paper, we propose a new method for 3-D SAR sparse imaging based on convolutional neural network (CNN). Inspired by the work of ISTA-NET, a complex-valued version for imaging tasks is modified. Furthermore, we introduce a approximate phase correction scheme for 3-D imaging, it makes the proposed method works with only a constant measurement matrix corresponding to any slice. Moreover, Using a random training strategy, ISTA-NET networks for 3-D SAR imaging are effectively trained. Experimental results demonstrate that the proposed method outperforms conventional ISTA large margins in both accuracy and speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信