管道倾角对部分分层浆体流动中固体分布的影响

V. Matoušek, J. Krupička, J. Konfršt, P. Vlasák
{"title":"管道倾角对部分分层浆体流动中固体分布的影响","authors":"V. Matoušek, J. Krupička, J. Konfršt, P. Vlasák","doi":"10.1115/ajkfluids2019-5397","DOIUrl":null,"url":null,"abstract":"\n Partially stratified flows like flows of sand-water slurries exhibit non-uniform distribution of solids (expressed as a vertical profile of local volumetric concentration) in a pipe cross section. The solids distribution in such flows is sensitive to pipe inclination. The more stratified the flow is the more sensitive its concentration profile is to the pipe slope. In general, the distribution tends to become more uniform (less stratified) if the inclination angle increases from zero (horizontal pipe) to positive values (ascending pipe) up to 90 degree (vertical pipe). In a pipe inclined to negative angles (descending pipe) the development is different. The flow tends to stratify more if it changes from horizontal flow to descending flow down to the angle of about −35 degree. If the angle further decreases towards −90 degree, then the flow becomes less stratified reaching uniform distribution at the vertical position.\n This also means that the same flow exhibits a very different degree of stratification in ascending and descending pipes inclined to the same (mild) slope say between ±10 and ±40 degree. The rather complex development of the solids distribution with the variation of the inclination of pipe is insufficiently documented experimentally and described theoretically in predictive models for a concentration profile in partially stratified flow.\n In order to extend the existing limited data set with experimental data for partially stratified flow of medium sand slurry, we have carried out a laboratory experiment with the slurry of narrow graded fraction of sand with the mean grain size of 0.55 mm in our test loop with an invert U-tube inclinable to arbitrary angle between 0 and 90 degree. A pipe of the loop has an internal diameter of 100 mm. Both legs of the U-tube have a measuring section over which differential pressures are measured. Radiometric devices mounted to both measuring sections sense concentration profiles across a pipe cross section. Furthermore, the discharge of slurry is measured in the test loop.\n In the paper, experimental results are presented for various inclination angles with a small step between 0 and ±45 degree and a development in the shape of the concentration profiles with the changing inclination angle is analyzed. For the analysis, it is critical to distinguish between suspended load and contact load in the flow as the two loads tend to react differently to the flow inclination. The measured concentration profiles and pressure drops are compared with predictions by the layered model adapted for taking the flow inclination into account.","PeriodicalId":322380,"journal":{"name":"Volume 5: Multiphase Flow","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Pipe Inclination on Solids Distribution in Partially Stratified Slurry Flow\",\"authors\":\"V. Matoušek, J. Krupička, J. Konfršt, P. Vlasák\",\"doi\":\"10.1115/ajkfluids2019-5397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Partially stratified flows like flows of sand-water slurries exhibit non-uniform distribution of solids (expressed as a vertical profile of local volumetric concentration) in a pipe cross section. The solids distribution in such flows is sensitive to pipe inclination. The more stratified the flow is the more sensitive its concentration profile is to the pipe slope. In general, the distribution tends to become more uniform (less stratified) if the inclination angle increases from zero (horizontal pipe) to positive values (ascending pipe) up to 90 degree (vertical pipe). In a pipe inclined to negative angles (descending pipe) the development is different. The flow tends to stratify more if it changes from horizontal flow to descending flow down to the angle of about −35 degree. If the angle further decreases towards −90 degree, then the flow becomes less stratified reaching uniform distribution at the vertical position.\\n This also means that the same flow exhibits a very different degree of stratification in ascending and descending pipes inclined to the same (mild) slope say between ±10 and ±40 degree. The rather complex development of the solids distribution with the variation of the inclination of pipe is insufficiently documented experimentally and described theoretically in predictive models for a concentration profile in partially stratified flow.\\n In order to extend the existing limited data set with experimental data for partially stratified flow of medium sand slurry, we have carried out a laboratory experiment with the slurry of narrow graded fraction of sand with the mean grain size of 0.55 mm in our test loop with an invert U-tube inclinable to arbitrary angle between 0 and 90 degree. A pipe of the loop has an internal diameter of 100 mm. Both legs of the U-tube have a measuring section over which differential pressures are measured. Radiometric devices mounted to both measuring sections sense concentration profiles across a pipe cross section. Furthermore, the discharge of slurry is measured in the test loop.\\n In the paper, experimental results are presented for various inclination angles with a small step between 0 and ±45 degree and a development in the shape of the concentration profiles with the changing inclination angle is analyzed. For the analysis, it is critical to distinguish between suspended load and contact load in the flow as the two loads tend to react differently to the flow inclination. The measured concentration profiles and pressure drops are compared with predictions by the layered model adapted for taking the flow inclination into account.\",\"PeriodicalId\":322380,\"journal\":{\"name\":\"Volume 5: Multiphase Flow\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Multiphase Flow\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-5397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Multiphase Flow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

部分分层流,如砂水泥浆流,在管道横截面上表现出固体的不均匀分布(以局部体积浓度的垂直剖面表示)。这种流体中的固体分布对管道倾角很敏感。流动分层程度越高,其浓度分布对管道坡度越敏感。一般来说,如果倾角从零(水平管道)增加到正值(上升管道)直至90度(垂直管道),则分布趋于更均匀(分层更少)。在向负角度倾斜的管道(下行管道)中,发展是不同的。当从水平流向下降到- 35度左右的角度时,流动更倾向于分层。如果夹角进一步减小到- 90度,那么气流的分层程度会降低,在垂直位置达到均匀分布。这也意味着同样的水流在倾斜于相同(轻微)坡度的上升和下降管道中表现出非常不同的分层程度,例如在±10到±40度之间。固体分布随管道倾斜度变化的相当复杂的发展在实验上没有充分的记录,在部分分层流浓度剖面的预测模型中也没有得到理论描述。为了将现有有限的介质砂浆部分分层流动的实验数据扩充到实验数据集,我们在试验环中采用平均粒径为0.55 mm的窄级配砂浆进行了室内实验,倒置u型管可倾角为0 ~ 90度之间任意角度。该回路的管道内径为100mm。u型管的两个支腿都有一个测量段,用来测量压差。安装在两个测量截面上的辐射测量装置检测管道横截面上的浓度分布。此外,在测试回路中测量浆料的排出量。本文给出了在0 ~±45度范围内不同倾角下的实验结果,并分析了浓度剖面形状随倾角变化的变化规律。在分析中,区分流动中的悬浮载荷和接触载荷是至关重要的,因为这两种载荷对流动倾角的反应往往不同。将实测的浓度分布和压降与考虑气流倾斜度的分层模型预测结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Pipe Inclination on Solids Distribution in Partially Stratified Slurry Flow
Partially stratified flows like flows of sand-water slurries exhibit non-uniform distribution of solids (expressed as a vertical profile of local volumetric concentration) in a pipe cross section. The solids distribution in such flows is sensitive to pipe inclination. The more stratified the flow is the more sensitive its concentration profile is to the pipe slope. In general, the distribution tends to become more uniform (less stratified) if the inclination angle increases from zero (horizontal pipe) to positive values (ascending pipe) up to 90 degree (vertical pipe). In a pipe inclined to negative angles (descending pipe) the development is different. The flow tends to stratify more if it changes from horizontal flow to descending flow down to the angle of about −35 degree. If the angle further decreases towards −90 degree, then the flow becomes less stratified reaching uniform distribution at the vertical position. This also means that the same flow exhibits a very different degree of stratification in ascending and descending pipes inclined to the same (mild) slope say between ±10 and ±40 degree. The rather complex development of the solids distribution with the variation of the inclination of pipe is insufficiently documented experimentally and described theoretically in predictive models for a concentration profile in partially stratified flow. In order to extend the existing limited data set with experimental data for partially stratified flow of medium sand slurry, we have carried out a laboratory experiment with the slurry of narrow graded fraction of sand with the mean grain size of 0.55 mm in our test loop with an invert U-tube inclinable to arbitrary angle between 0 and 90 degree. A pipe of the loop has an internal diameter of 100 mm. Both legs of the U-tube have a measuring section over which differential pressures are measured. Radiometric devices mounted to both measuring sections sense concentration profiles across a pipe cross section. Furthermore, the discharge of slurry is measured in the test loop. In the paper, experimental results are presented for various inclination angles with a small step between 0 and ±45 degree and a development in the shape of the concentration profiles with the changing inclination angle is analyzed. For the analysis, it is critical to distinguish between suspended load and contact load in the flow as the two loads tend to react differently to the flow inclination. The measured concentration profiles and pressure drops are compared with predictions by the layered model adapted for taking the flow inclination into account.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信