火星高光谱图像的无监督端元提取

B. Luo, J. Chanussot, S. Douté, X. Ceamanos
{"title":"火星高光谱图像的无监督端元提取","authors":"B. Luo, J. Chanussot, S. Douté, X. Ceamanos","doi":"10.1109/WHISPERS.2009.5289070","DOIUrl":null,"url":null,"abstract":"In this paper, we try to identify and quantify the chemical species present on the surface of planet Mars with the help of hyperspectral images provided by the instrument OMEGA [1]. For this purpose, we suppose that the spectrum of each pixel is a linear mixture of the spectra of different endmembers. From this linear mixture hypothesis, our work is divided into two steps. Firstly, we propose a new unsupervised method for estimating the number of endmembers based on the eigenvalues of covariance and correlation matrix of the hyperspectral data. This method is then validated on synthetic data. With the help of the number estimated by the precedent step, we use the Vertex Component Analysis (VCA) to extract the spectra and the abundances of the endmembers. The results on hyperspectral image acquired by the OMEGA instrument are shown.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Unsupervised endmember extraction of martian hyperspectral images\",\"authors\":\"B. Luo, J. Chanussot, S. Douté, X. Ceamanos\",\"doi\":\"10.1109/WHISPERS.2009.5289070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we try to identify and quantify the chemical species present on the surface of planet Mars with the help of hyperspectral images provided by the instrument OMEGA [1]. For this purpose, we suppose that the spectrum of each pixel is a linear mixture of the spectra of different endmembers. From this linear mixture hypothesis, our work is divided into two steps. Firstly, we propose a new unsupervised method for estimating the number of endmembers based on the eigenvalues of covariance and correlation matrix of the hyperspectral data. This method is then validated on synthetic data. With the help of the number estimated by the precedent step, we use the Vertex Component Analysis (VCA) to extract the spectra and the abundances of the endmembers. The results on hyperspectral image acquired by the OMEGA instrument are shown.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5289070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们试图借助OMEGA仪器提供的高光谱图像来识别和量化火星表面存在的化学物质[1]。为此,我们假设每个像素的光谱是不同端元光谱的线性混合。从这个线性混合假设出发,我们的工作分为两个步骤。首先,提出了一种基于高光谱数据协方差特征值和相关矩阵特征值的端元个数估计方法。然后在合成数据上验证该方法。利用前一步估计的数目,利用顶点分量分析(Vertex Component Analysis, VCA)提取端元的光谱和丰度。给出了OMEGA仪器高光谱图像的处理结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised endmember extraction of martian hyperspectral images
In this paper, we try to identify and quantify the chemical species present on the surface of planet Mars with the help of hyperspectral images provided by the instrument OMEGA [1]. For this purpose, we suppose that the spectrum of each pixel is a linear mixture of the spectra of different endmembers. From this linear mixture hypothesis, our work is divided into two steps. Firstly, we propose a new unsupervised method for estimating the number of endmembers based on the eigenvalues of covariance and correlation matrix of the hyperspectral data. This method is then validated on synthetic data. With the help of the number estimated by the precedent step, we use the Vertex Component Analysis (VCA) to extract the spectra and the abundances of the endmembers. The results on hyperspectral image acquired by the OMEGA instrument are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信