用于大型计算场的作业调度框架

R. Baraglia, Gabriele Capannini, Patrizio Dazzi, Giancarlo Pagano
{"title":"用于大型计算场的作业调度框架","authors":"R. Baraglia, Gabriele Capannini, Patrizio Dazzi, Giancarlo Pagano","doi":"10.1145/1362622.1362695","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method, called Convergent Scheduling, for scheduling a continuous stream of batch jobs on the machines of large-scale computing farms. This method exploits a set of heuristics that guide the scheduler in making decisions. Each heuristics manages a specific problem constraint, and contributes to carry out a value that measures the degree of matching between a job and a machine. Scheduling choices are taken to meet the QoS requested by the submitted jobs, and optimizing the usage of hardware and software resources. We compared it with some of the most common job scheduling algorithms, i.e. Backfilling, and Earliest Deadline First. Convergent Scheduling is able to compute good assignments, while being a simple and modular algorithm.","PeriodicalId":274744,"journal":{"name":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"A job scheduling framework for large computing farms\",\"authors\":\"R. Baraglia, Gabriele Capannini, Patrizio Dazzi, Giancarlo Pagano\",\"doi\":\"10.1145/1362622.1362695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new method, called Convergent Scheduling, for scheduling a continuous stream of batch jobs on the machines of large-scale computing farms. This method exploits a set of heuristics that guide the scheduler in making decisions. Each heuristics manages a specific problem constraint, and contributes to carry out a value that measures the degree of matching between a job and a machine. Scheduling choices are taken to meet the QoS requested by the submitted jobs, and optimizing the usage of hardware and software resources. We compared it with some of the most common job scheduling algorithms, i.e. Backfilling, and Earliest Deadline First. Convergent Scheduling is able to compute good assignments, while being a simple and modular algorithm.\",\"PeriodicalId\":274744,\"journal\":{\"name\":\"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1362622.1362695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1362622.1362695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

在本文中,我们提出了一种新的方法,称为收敛调度,用于调度大规模计算场机器上的连续批处理作业流。此方法利用一组启发式方法来指导调度器做出决策。每个启发式方法管理一个特定的问题约束,并有助于执行一个值来衡量工作和机器之间的匹配程度。采用调度选择来满足提交作业所请求的QoS,并优化硬件和软件资源的使用。我们将其与一些最常见的作业调度算法进行了比较,例如回填和最早截止日期优先。收敛调度算法是一种简单、模块化的算法,能够计算出较好的分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A job scheduling framework for large computing farms
In this paper, we propose a new method, called Convergent Scheduling, for scheduling a continuous stream of batch jobs on the machines of large-scale computing farms. This method exploits a set of heuristics that guide the scheduler in making decisions. Each heuristics manages a specific problem constraint, and contributes to carry out a value that measures the degree of matching between a job and a machine. Scheduling choices are taken to meet the QoS requested by the submitted jobs, and optimizing the usage of hardware and software resources. We compared it with some of the most common job scheduling algorithms, i.e. Backfilling, and Earliest Deadline First. Convergent Scheduling is able to compute good assignments, while being a simple and modular algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信