{"title":"基于骨架的动作识别的对象图卷积网络","authors":"Xiangbin Shi, Haowen Li, Fang Liu, Deyuan Zhang, Jing Bi, Zhaokui Li","doi":"10.1109/IUCC/DSCI/SmartCNS.2019.00074","DOIUrl":null,"url":null,"abstract":"Recently, graph convolutional neural networks has become a research hotspot for skeleton-based action recognition because of its excellent performance on graph structure data. Compared to traditional methods, it can explicitly exploit the natural connectivity among the joints and improve greater expressive power. In this paper, we propose a two-stream graph convolutional networks with objects for skeleton-based action recognition. An algorithm is designed for matching similar skeleton in adjacent frames, so that we can get the right skeletons which belong to the same person. It performs well when there are other irrelevant persons in the scene. In addition, other features are less employed except for the human joint in skeleton-based action recognition. We introduce limbs orientation information and related objects information. The related objects are treated as joint points which link with hands. The two-stream networks are built to model coordinate features and orientation features respectively, the results of two streams are fused to one. We get good results on the Kinetics dataset with our methods.","PeriodicalId":410905,"journal":{"name":"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Graph Convolutional Networks with Objects for Skeleton-Based Action Recognition\",\"authors\":\"Xiangbin Shi, Haowen Li, Fang Liu, Deyuan Zhang, Jing Bi, Zhaokui Li\",\"doi\":\"10.1109/IUCC/DSCI/SmartCNS.2019.00074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, graph convolutional neural networks has become a research hotspot for skeleton-based action recognition because of its excellent performance on graph structure data. Compared to traditional methods, it can explicitly exploit the natural connectivity among the joints and improve greater expressive power. In this paper, we propose a two-stream graph convolutional networks with objects for skeleton-based action recognition. An algorithm is designed for matching similar skeleton in adjacent frames, so that we can get the right skeletons which belong to the same person. It performs well when there are other irrelevant persons in the scene. In addition, other features are less employed except for the human joint in skeleton-based action recognition. We introduce limbs orientation information and related objects information. The related objects are treated as joint points which link with hands. The two-stream networks are built to model coordinate features and orientation features respectively, the results of two streams are fused to one. We get good results on the Kinetics dataset with our methods.\",\"PeriodicalId\":410905,\"journal\":{\"name\":\"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph Convolutional Networks with Objects for Skeleton-Based Action Recognition
Recently, graph convolutional neural networks has become a research hotspot for skeleton-based action recognition because of its excellent performance on graph structure data. Compared to traditional methods, it can explicitly exploit the natural connectivity among the joints and improve greater expressive power. In this paper, we propose a two-stream graph convolutional networks with objects for skeleton-based action recognition. An algorithm is designed for matching similar skeleton in adjacent frames, so that we can get the right skeletons which belong to the same person. It performs well when there are other irrelevant persons in the scene. In addition, other features are less employed except for the human joint in skeleton-based action recognition. We introduce limbs orientation information and related objects information. The related objects are treated as joint points which link with hands. The two-stream networks are built to model coordinate features and orientation features respectively, the results of two streams are fused to one. We get good results on the Kinetics dataset with our methods.