基于方差分析的特征向量评价准则

Abbas Salami, F. Ghassemi, Mohammad Hasan Moradi
{"title":"基于方差分析的特征向量评价准则","authors":"Abbas Salami, F. Ghassemi, Mohammad Hasan Moradi","doi":"10.1109/ICBME.2017.8430266","DOIUrl":null,"url":null,"abstract":"The objective of this research is to evaluate feature vectors based on statistical analysis, focusing on application in brain-computer interface (BCI) domain. Common spatial pattern (CSP) is one of the most frequently used algorithms in BCI to extract features from electroencephalogram (EEG). However, since CSP would be a greedy algorithm by solving it through eigenvalue decomposition method, choosing features in a sequential way does not necessarily result in the minimal achievable classification error for higher than 2-dimensional feature vectors. To overcome this issue, Unbalanced Factorial ANOVA (UF-ANOVA) analysis based on linear regression has been used in order to evaluate features extracted from CSP algorithm. Finally, a criterion based on Mahalanobis distance and F distribution parameter resulted from ANOVA table is introduced to evaluate feature vectors. It is shown that proposed criterion is compatible with widely used criterions such as Fisher score (FS) and Mutual information (MI). Moreover, proposed analysis is not limited to one-dimensional feature vectors and can be applied to higher dimensions.","PeriodicalId":116204,"journal":{"name":"2017 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Criterion to Evaluate Feature Vectors Based on ANOVA Statistical Analysis\",\"authors\":\"Abbas Salami, F. Ghassemi, Mohammad Hasan Moradi\",\"doi\":\"10.1109/ICBME.2017.8430266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this research is to evaluate feature vectors based on statistical analysis, focusing on application in brain-computer interface (BCI) domain. Common spatial pattern (CSP) is one of the most frequently used algorithms in BCI to extract features from electroencephalogram (EEG). However, since CSP would be a greedy algorithm by solving it through eigenvalue decomposition method, choosing features in a sequential way does not necessarily result in the minimal achievable classification error for higher than 2-dimensional feature vectors. To overcome this issue, Unbalanced Factorial ANOVA (UF-ANOVA) analysis based on linear regression has been used in order to evaluate features extracted from CSP algorithm. Finally, a criterion based on Mahalanobis distance and F distribution parameter resulted from ANOVA table is introduced to evaluate feature vectors. It is shown that proposed criterion is compatible with widely used criterions such as Fisher score (FS) and Mutual information (MI). Moreover, proposed analysis is not limited to one-dimensional feature vectors and can be applied to higher dimensions.\",\"PeriodicalId\":116204,\"journal\":{\"name\":\"2017 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBME.2017.8430266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2017.8430266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究的目的是基于统计分析对特征向量进行评价,重点研究其在脑机接口(BCI)领域的应用。共同空间模式(CSP)是脑机接口中最常用的提取脑电图特征的算法之一。然而,由于CSP通过特征值分解方法求解会是一个贪心算法,因此对于高于二维的特征向量,以顺序的方式选择特征并不一定会产生最小的可实现分类误差。为了克服这一问题,利用基于线性回归的不平衡因子方差分析(UF-ANOVA)来评估从CSP算法中提取的特征。最后,引入基于方差分析表得出的马氏距离和F分布参数的准则来评估特征向量。结果表明,所提出的准则与常用的Fisher评分(FS)和互信息(MI)等准则是兼容的。此外,所提出的分析不局限于一维特征向量,可以应用于更高的维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Criterion to Evaluate Feature Vectors Based on ANOVA Statistical Analysis
The objective of this research is to evaluate feature vectors based on statistical analysis, focusing on application in brain-computer interface (BCI) domain. Common spatial pattern (CSP) is one of the most frequently used algorithms in BCI to extract features from electroencephalogram (EEG). However, since CSP would be a greedy algorithm by solving it through eigenvalue decomposition method, choosing features in a sequential way does not necessarily result in the minimal achievable classification error for higher than 2-dimensional feature vectors. To overcome this issue, Unbalanced Factorial ANOVA (UF-ANOVA) analysis based on linear regression has been used in order to evaluate features extracted from CSP algorithm. Finally, a criterion based on Mahalanobis distance and F distribution parameter resulted from ANOVA table is introduced to evaluate feature vectors. It is shown that proposed criterion is compatible with widely used criterions such as Fisher score (FS) and Mutual information (MI). Moreover, proposed analysis is not limited to one-dimensional feature vectors and can be applied to higher dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信