基于特征的心电信号分割

H. Krim, D.H. Brooks
{"title":"基于特征的心电信号分割","authors":"H. Krim, D.H. Brooks","doi":"10.1109/TFSA.1996.546695","DOIUrl":null,"url":null,"abstract":"Automatic segmentation of ECG signals is important in both clinical and research settings. Past algorithms have relied on incorporation of detailed heuristics. Here, the authors propose a segmentation technique based on the best local trigonometric basis. They show by means of real data examples that the entropy criterion which achieves the most parsimonious representation of a signal results in an overly-fine segmentation of the ECG signal, and thus establish the need for a more comprehensive criterion. The authors introduce a novel best basis search criterion which is based on a linear combination of the entropy measure and a local measure of smoothness and curvature. They tested the algorithm on the MIT-BIH arrythmia database.","PeriodicalId":415923,"journal":{"name":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Feature-based segmentation of ECG signals\",\"authors\":\"H. Krim, D.H. Brooks\",\"doi\":\"10.1109/TFSA.1996.546695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic segmentation of ECG signals is important in both clinical and research settings. Past algorithms have relied on incorporation of detailed heuristics. Here, the authors propose a segmentation technique based on the best local trigonometric basis. They show by means of real data examples that the entropy criterion which achieves the most parsimonious representation of a signal results in an overly-fine segmentation of the ECG signal, and thus establish the need for a more comprehensive criterion. The authors introduce a novel best basis search criterion which is based on a linear combination of the entropy measure and a local measure of smoothness and curvature. They tested the algorithm on the MIT-BIH arrythmia database.\",\"PeriodicalId\":415923,\"journal\":{\"name\":\"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TFSA.1996.546695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1996.546695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

心电信号的自动分割在临床和研究中都很重要。过去的算法依赖于详细启发式的结合。在此,作者提出了一种基于最佳局部三角基的分割技术。他们通过实际数据实例表明,实现信号最简洁表示的熵准则会导致心电信号分割过于精细,因此需要一个更全面的准则。提出了一种基于熵测度与局部光滑度和曲率测度的线性组合的最佳基搜索准则。他们在MIT-BIH心律失常数据库中测试了该算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature-based segmentation of ECG signals
Automatic segmentation of ECG signals is important in both clinical and research settings. Past algorithms have relied on incorporation of detailed heuristics. Here, the authors propose a segmentation technique based on the best local trigonometric basis. They show by means of real data examples that the entropy criterion which achieves the most parsimonious representation of a signal results in an overly-fine segmentation of the ECG signal, and thus establish the need for a more comprehensive criterion. The authors introduce a novel best basis search criterion which is based on a linear combination of the entropy measure and a local measure of smoothness and curvature. They tested the algorithm on the MIT-BIH arrythmia database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信