一种新的无线传感器网络定位估计优化算法——基于测试平台的分析与实验验证

S. Tennina, M. Renzo
{"title":"一种新的无线传感器网络定位估计优化算法——基于测试平台的分析与实验验证","authors":"S. Tennina, M. Renzo","doi":"10.1109/ICCCN.2008.ECP.166","DOIUrl":null,"url":null,"abstract":"In recent contributions [Tennina, S., et al., 2008], [Tennina, S., 2008], we have provided a comparative analysis of various optimization algorithms, which can be used for atomic location estimation, and suggested an enhanced version of the steepest descent (ESD) algorithm, which we have shown to be competitive with well-known distributed localization algorithms in terms of estimation accuracy and numerical complexity. Moreover, in [Tennina, S., 2008] we have conducted a statistical characterization of the positioning error distribution of the ESD algorithm, and shown that the latter error can be well approximated by the family of Pearson distributions. However, the analysis in [Tennina, S., et al., 2008; Tennina, S., 2008; Tennina, S., 2008] is mainly based on numerical (i.e., computer-based) simulations, which only in part allows to predict the system performance in a realistic environment where sensor nodes are expected to operate. As a consequence, the aim of this contribution is twofold: i) to analyze the error performance of the ESD algorithm in a real testbed platform working in a typical indoor environment, and ii) to compare experimental and simulated results to substantiate via real measurements our previous findings useful for network setup and analysis. In particular, we will first report on the implementation issues related on mapping the ESD algorithm on the CrossBow's MICAz sensor node platform [http://www.xbow.com/Products/wproductsoverview.aspx.], and, then, we will investigate, via real experiments, on the effect of network topology and ranging errors in estimating the final position of an unknown sensor node.","PeriodicalId":314071,"journal":{"name":"2008 Proceedings of 17th International Conference on Computer Communications and Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"ESD: A Novel Optimization Algorithm for Positioning Estimation in Wireless Sensor Networks - Analysis and Experimental Validation via a Testbed Platform\",\"authors\":\"S. Tennina, M. Renzo\",\"doi\":\"10.1109/ICCCN.2008.ECP.166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent contributions [Tennina, S., et al., 2008], [Tennina, S., 2008], we have provided a comparative analysis of various optimization algorithms, which can be used for atomic location estimation, and suggested an enhanced version of the steepest descent (ESD) algorithm, which we have shown to be competitive with well-known distributed localization algorithms in terms of estimation accuracy and numerical complexity. Moreover, in [Tennina, S., 2008] we have conducted a statistical characterization of the positioning error distribution of the ESD algorithm, and shown that the latter error can be well approximated by the family of Pearson distributions. However, the analysis in [Tennina, S., et al., 2008; Tennina, S., 2008; Tennina, S., 2008] is mainly based on numerical (i.e., computer-based) simulations, which only in part allows to predict the system performance in a realistic environment where sensor nodes are expected to operate. As a consequence, the aim of this contribution is twofold: i) to analyze the error performance of the ESD algorithm in a real testbed platform working in a typical indoor environment, and ii) to compare experimental and simulated results to substantiate via real measurements our previous findings useful for network setup and analysis. In particular, we will first report on the implementation issues related on mapping the ESD algorithm on the CrossBow's MICAz sensor node platform [http://www.xbow.com/Products/wproductsoverview.aspx.], and, then, we will investigate, via real experiments, on the effect of network topology and ranging errors in estimating the final position of an unknown sensor node.\",\"PeriodicalId\":314071,\"journal\":{\"name\":\"2008 Proceedings of 17th International Conference on Computer Communications and Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Proceedings of 17th International Conference on Computer Communications and Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCN.2008.ECP.166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Proceedings of 17th International Conference on Computer Communications and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2008.ECP.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在最近的文章[Tennina, S.等人,2008]和[Tennina, S., 2008]中,我们对可用于原子位置估计的各种优化算法进行了比较分析,并提出了一种增强版的最陡下降(ESD)算法,我们已经证明该算法在估计精度和数值复杂性方面与知名的分布式定位算法具有竞争力。此外,在[Tennina, S., 2008]中,我们对ESD算法的定位误差分布进行了统计表征,并表明后者的误差可以很好地近似于Pearson分布族。然而,[Tennina, S.等,2008;田纳西州,2008;Tennina, S., 2008]主要基于数值(即基于计算机的)模拟,这只能部分地预测传感器节点预期运行的现实环境中的系统性能。因此,这一贡献的目的是双重的:i)分析在典型室内环境中工作的真实测试平台上ESD算法的误差性能,ii)比较实验和模拟结果,通过实际测量来证实我们之前的发现对网络设置和分析有用。特别是,我们将首先报告与在CrossBow的MICAz传感器节点平台上映射ESD算法相关的实现问题[http://www.xbow.com/Products/wproductsoverview.aspx.],然后,我们将通过实际实验研究网络拓扑和测距误差对估计未知传感器节点最终位置的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESD: A Novel Optimization Algorithm for Positioning Estimation in Wireless Sensor Networks - Analysis and Experimental Validation via a Testbed Platform
In recent contributions [Tennina, S., et al., 2008], [Tennina, S., 2008], we have provided a comparative analysis of various optimization algorithms, which can be used for atomic location estimation, and suggested an enhanced version of the steepest descent (ESD) algorithm, which we have shown to be competitive with well-known distributed localization algorithms in terms of estimation accuracy and numerical complexity. Moreover, in [Tennina, S., 2008] we have conducted a statistical characterization of the positioning error distribution of the ESD algorithm, and shown that the latter error can be well approximated by the family of Pearson distributions. However, the analysis in [Tennina, S., et al., 2008; Tennina, S., 2008; Tennina, S., 2008] is mainly based on numerical (i.e., computer-based) simulations, which only in part allows to predict the system performance in a realistic environment where sensor nodes are expected to operate. As a consequence, the aim of this contribution is twofold: i) to analyze the error performance of the ESD algorithm in a real testbed platform working in a typical indoor environment, and ii) to compare experimental and simulated results to substantiate via real measurements our previous findings useful for network setup and analysis. In particular, we will first report on the implementation issues related on mapping the ESD algorithm on the CrossBow's MICAz sensor node platform [http://www.xbow.com/Products/wproductsoverview.aspx.], and, then, we will investigate, via real experiments, on the effect of network topology and ranging errors in estimating the final position of an unknown sensor node.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信