使用Partiview可视化高维数据集

Dinoj Surendran, Stuart Levy
{"title":"使用Partiview可视化高维数据集","authors":"Dinoj Surendran, Stuart Levy","doi":"10.1109/INFVIS.2004.76","DOIUrl":null,"url":null,"abstract":"A standard method of visualizing high-dimensional data is reducing its dimensionality to two or three using some algorithm, and then creating a scatterplot with data represented by labelled and/or colored dots. Two problems with this approach are (1) dots do not represent data well, (2) reducing to just three dimensions does not make full use of several dimensionality-reduction algorithms. We demonstrate how Partiview can be used to solve these problems, in the context of handwriting recognition and image retrieval.","PeriodicalId":109217,"journal":{"name":"IEEE Symposium on Information Visualization","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Visualizing High Dimensional Datasets Using Partiview\",\"authors\":\"Dinoj Surendran, Stuart Levy\",\"doi\":\"10.1109/INFVIS.2004.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A standard method of visualizing high-dimensional data is reducing its dimensionality to two or three using some algorithm, and then creating a scatterplot with data represented by labelled and/or colored dots. Two problems with this approach are (1) dots do not represent data well, (2) reducing to just three dimensions does not make full use of several dimensionality-reduction algorithms. We demonstrate how Partiview can be used to solve these problems, in the context of handwriting recognition and image retrieval.\",\"PeriodicalId\":109217,\"journal\":{\"name\":\"IEEE Symposium on Information Visualization\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Symposium on Information Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFVIS.2004.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Information Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFVIS.2004.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

可视化高维数据的标准方法是使用某种算法将其维数减少到2或3,然后用标记和/或彩色点表示的数据创建散点图。这种方法的两个问题是:(1)点不能很好地表示数据;(2)仅降维不能充分利用几种降维算法。我们演示了如何在手写识别和图像检索的背景下使用Partiview来解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing High Dimensional Datasets Using Partiview
A standard method of visualizing high-dimensional data is reducing its dimensionality to two or three using some algorithm, and then creating a scatterplot with data represented by labelled and/or colored dots. Two problems with this approach are (1) dots do not represent data well, (2) reducing to just three dimensions does not make full use of several dimensionality-reduction algorithms. We demonstrate how Partiview can be used to solve these problems, in the context of handwriting recognition and image retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信