{"title":"在自适应神经模糊模型的条件下","authors":"M. Brown, P. E. An, C. Harris","doi":"10.1109/FUZZY.1995.409755","DOIUrl":null,"url":null,"abstract":"Learning within fuzzy and neurofuzzy systems is becomingly increasingly important as researchers try to infer qualitative, vague information from quantitative, numeric data. The fuzzy representation of an adaptive neurofuzzy system is important both for initialisation and validation purposes, where a designer needs to interpret the knowledge stored in a network. Therefore it is important to study the convergence and rate of convergence characteristics of the parameters in a neurofuzzy model and investigate how this depends on the system's structure. This paper considers how the condition of the input fuzzy sets determines the convergence and generalisation abilities of the network and describes several new results about instantaneous least mean square training rules.<<ETX>>","PeriodicalId":150477,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the condition of adaptive neurofuzzy models\",\"authors\":\"M. Brown, P. E. An, C. Harris\",\"doi\":\"10.1109/FUZZY.1995.409755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning within fuzzy and neurofuzzy systems is becomingly increasingly important as researchers try to infer qualitative, vague information from quantitative, numeric data. The fuzzy representation of an adaptive neurofuzzy system is important both for initialisation and validation purposes, where a designer needs to interpret the knowledge stored in a network. Therefore it is important to study the convergence and rate of convergence characteristics of the parameters in a neurofuzzy model and investigate how this depends on the system's structure. This paper considers how the condition of the input fuzzy sets determines the convergence and generalisation abilities of the network and describes several new results about instantaneous least mean square training rules.<<ETX>>\",\"PeriodicalId\":150477,\"journal\":{\"name\":\"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1995.409755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1995.409755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning within fuzzy and neurofuzzy systems is becomingly increasingly important as researchers try to infer qualitative, vague information from quantitative, numeric data. The fuzzy representation of an adaptive neurofuzzy system is important both for initialisation and validation purposes, where a designer needs to interpret the knowledge stored in a network. Therefore it is important to study the convergence and rate of convergence characteristics of the parameters in a neurofuzzy model and investigate how this depends on the system's structure. This paper considers how the condition of the input fuzzy sets determines the convergence and generalisation abilities of the network and describes several new results about instantaneous least mean square training rules.<>