触觉互联网的动态网络切片

Kurian Polachan, Belma Turkovic, Prabhakar T. Venkata, C. Singh, F. Kuipers
{"title":"触觉互联网的动态网络切片","authors":"Kurian Polachan, Belma Turkovic, Prabhakar T. Venkata, C. Singh, F. Kuipers","doi":"10.1109/ICCPS48487.2020.00020","DOIUrl":null,"url":null,"abstract":"Tactile internet\" refers to a network that can support real-time interactions between human operators and remote cyber-physical systems as if they were near to each other. For this, the network should support ultra-low latency communication, often referred to as the 1ms challenge. However, we observe that network requirements, such as latency and bandwidth, of tactile internet based cyber-physical systems or Tactile Cyber-Physical Systems (TCPS) are not static: they severely fluctuate over time. Therefore, for TCPS, static provisioning of network resources is sub-optimal. For optimal utilization of network resources, we propose a mechanism to, per TCPS flow, dynamically create, destroy and switch network slices, based on the network resources needed at that time. Our solution consists of two main components. First, we develop a clustering algorithm to determine the slices and their specifications required to support a TCPS flow. Second, we leverage Software-Defined Networking (SDN) and P4-programmable switches to enable on- the-fly provisioning and switching of these slices.","PeriodicalId":158690,"journal":{"name":"2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Dynamic Network Slicing for the Tactile Internet\",\"authors\":\"Kurian Polachan, Belma Turkovic, Prabhakar T. Venkata, C. Singh, F. Kuipers\",\"doi\":\"10.1109/ICCPS48487.2020.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tactile internet\\\" refers to a network that can support real-time interactions between human operators and remote cyber-physical systems as if they were near to each other. For this, the network should support ultra-low latency communication, often referred to as the 1ms challenge. However, we observe that network requirements, such as latency and bandwidth, of tactile internet based cyber-physical systems or Tactile Cyber-Physical Systems (TCPS) are not static: they severely fluctuate over time. Therefore, for TCPS, static provisioning of network resources is sub-optimal. For optimal utilization of network resources, we propose a mechanism to, per TCPS flow, dynamically create, destroy and switch network slices, based on the network resources needed at that time. Our solution consists of two main components. First, we develop a clustering algorithm to determine the slices and their specifications required to support a TCPS flow. Second, we leverage Software-Defined Networking (SDN) and P4-programmable switches to enable on- the-fly provisioning and switching of these slices.\",\"PeriodicalId\":158690,\"journal\":{\"name\":\"2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPS48487.2020.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS48487.2020.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

“触觉互联网”指的是一种可以支持人类操作员和远程网络物理系统之间实时交互的网络,就好像他们彼此很近一样。为此,网络应该支持超低延迟通信,通常称为1ms挑战。然而,我们观察到,基于触觉互联网的网络物理系统或触觉网络物理系统(TCPS)的网络需求,如延迟和带宽,不是静态的:它们随着时间的推移而剧烈波动。因此,对于tcp,静态提供网络资源是次优的。为了实现网络资源的最优利用,我们提出了一种机制,在每个tcp流中,根据当时需要的网络资源,动态地创建、销毁和切换网络片。我们的解决方案由两个主要部分组成。首先,我们开发了一个聚类算法来确定支持tcp流所需的片及其规范。其次,我们利用软件定义网络(SDN)和p4可编程交换机来实现这些切片的实时供应和交换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Network Slicing for the Tactile Internet
Tactile internet" refers to a network that can support real-time interactions between human operators and remote cyber-physical systems as if they were near to each other. For this, the network should support ultra-low latency communication, often referred to as the 1ms challenge. However, we observe that network requirements, such as latency and bandwidth, of tactile internet based cyber-physical systems or Tactile Cyber-Physical Systems (TCPS) are not static: they severely fluctuate over time. Therefore, for TCPS, static provisioning of network resources is sub-optimal. For optimal utilization of network resources, we propose a mechanism to, per TCPS flow, dynamically create, destroy and switch network slices, based on the network resources needed at that time. Our solution consists of two main components. First, we develop a clustering algorithm to determine the slices and their specifications required to support a TCPS flow. Second, we leverage Software-Defined Networking (SDN) and P4-programmable switches to enable on- the-fly provisioning and switching of these slices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信