revivive:一个使用tweet和自动聊天机器人的抑郁症检测和控制系统

Riddhi Hakani, Samiksha Patil, Sakshi Patil, Siddhi Jhunjhunwala, Khushali Deulkar
{"title":"revivive:一个使用tweet和自动聊天机器人的抑郁症检测和控制系统","authors":"Riddhi Hakani, Samiksha Patil, Sakshi Patil, Siddhi Jhunjhunwala, Khushali Deulkar","doi":"10.1109/AIC55036.2022.9848978","DOIUrl":null,"url":null,"abstract":"Mental Health is a stigma in India and on a global scale. Ignorance of mental health on our part has created a world where those suffering from it cannot talk about it openly and often feel uncomfortable disclosing it to others or even professional therapists. To address this problem, we propose a digital system that detects signs of anxiety and also suggests methods for depression control. Revivify performs a comprehensive analysis of a user’s mental state using different techniques. We have used tweets, patient health questionnaires, depression anxiety stress scale (DASS), and personalized responses as our dataset. Our system uses Feed Forward Neural Networks, Latent Dirichlet Allocation, and Random Forest Classifier algorithm to classify the user responses and tweets into one of the nine levels of anxiety and depression. Random Forest Classifier gives the highest accuracy. Further, the chatbot also suggests various blogs and provides helpline numbers for damage control. This system is a cost-effective solution to detect depression.","PeriodicalId":433590,"journal":{"name":"2022 IEEE World Conference on Applied Intelligence and Computing (AIC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Revivify: A Depression Detection and Control System using Tweets and Automated Chatbot\",\"authors\":\"Riddhi Hakani, Samiksha Patil, Sakshi Patil, Siddhi Jhunjhunwala, Khushali Deulkar\",\"doi\":\"10.1109/AIC55036.2022.9848978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mental Health is a stigma in India and on a global scale. Ignorance of mental health on our part has created a world where those suffering from it cannot talk about it openly and often feel uncomfortable disclosing it to others or even professional therapists. To address this problem, we propose a digital system that detects signs of anxiety and also suggests methods for depression control. Revivify performs a comprehensive analysis of a user’s mental state using different techniques. We have used tweets, patient health questionnaires, depression anxiety stress scale (DASS), and personalized responses as our dataset. Our system uses Feed Forward Neural Networks, Latent Dirichlet Allocation, and Random Forest Classifier algorithm to classify the user responses and tweets into one of the nine levels of anxiety and depression. Random Forest Classifier gives the highest accuracy. Further, the chatbot also suggests various blogs and provides helpline numbers for damage control. This system is a cost-effective solution to detect depression.\",\"PeriodicalId\":433590,\"journal\":{\"name\":\"2022 IEEE World Conference on Applied Intelligence and Computing (AIC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE World Conference on Applied Intelligence and Computing (AIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIC55036.2022.9848978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World Conference on Applied Intelligence and Computing (AIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIC55036.2022.9848978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

心理健康在印度和全球范围内都是一种耻辱。我们对心理健康的无知造成了一个世界,在这个世界里,那些患有心理健康的人不能公开谈论它,而且经常感到不舒服,向别人甚至是专业治疗师透露。为了解决这个问题,我们提出了一个数字系统,可以检测焦虑的迹象,并提出控制抑郁的方法。revivive使用不同的技术对用户的精神状态进行全面的分析。我们使用推文、患者健康问卷、抑郁焦虑压力量表(DASS)和个性化反应作为我们的数据集。我们的系统使用前馈神经网络、潜在狄利克雷分配和随机森林分类器算法将用户的回复和推文分为九个焦虑和抑郁级别之一。随机森林分类器给出了最高的准确率。此外,聊天机器人还会推荐各种博客,并提供损害控制的热线电话。该系统是检测凹陷的一种经济有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revivify: A Depression Detection and Control System using Tweets and Automated Chatbot
Mental Health is a stigma in India and on a global scale. Ignorance of mental health on our part has created a world where those suffering from it cannot talk about it openly and often feel uncomfortable disclosing it to others or even professional therapists. To address this problem, we propose a digital system that detects signs of anxiety and also suggests methods for depression control. Revivify performs a comprehensive analysis of a user’s mental state using different techniques. We have used tweets, patient health questionnaires, depression anxiety stress scale (DASS), and personalized responses as our dataset. Our system uses Feed Forward Neural Networks, Latent Dirichlet Allocation, and Random Forest Classifier algorithm to classify the user responses and tweets into one of the nine levels of anxiety and depression. Random Forest Classifier gives the highest accuracy. Further, the chatbot also suggests various blogs and provides helpline numbers for damage control. This system is a cost-effective solution to detect depression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信