基于改进LBP和优化算法的列车中板螺栓损耗故障检测

Zhang Hongjian, He Ping, Y. Xudong
{"title":"基于改进LBP和优化算法的列车中板螺栓损耗故障检测","authors":"Zhang Hongjian, He Ping, Y. Xudong","doi":"10.2174/1874444301507011916","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to fault detection of train center plate bolts loss based on Local Binary Patterns (LBP) and Gabor-GA optimization theory. A modified LBP operator including the positive-negative sign and magnitude components of local gray difference is introduced to extract much more texture information. Multi-channel Gabor wavelet with different scales and orientations is applied on the images to create new representations in the spatial domain. Then, the weight of each Gabor channel can be optimized through the Genetic Algorithm (GA) to obtain enhanced features. Finally, the weighted features are concatenated together and delivered into Support Vector Machine (SVM) network for classification. Experimental results show that the new approach can be an effective and reliable measure for monitoring fault.","PeriodicalId":153592,"journal":{"name":"The Open Automation and Control Systems Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fault Detection of Train Center Plate Bolts Loss Using Modified LBP andOptimization Algorithm\",\"authors\":\"Zhang Hongjian, He Ping, Y. Xudong\",\"doi\":\"10.2174/1874444301507011916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to fault detection of train center plate bolts loss based on Local Binary Patterns (LBP) and Gabor-GA optimization theory. A modified LBP operator including the positive-negative sign and magnitude components of local gray difference is introduced to extract much more texture information. Multi-channel Gabor wavelet with different scales and orientations is applied on the images to create new representations in the spatial domain. Then, the weight of each Gabor channel can be optimized through the Genetic Algorithm (GA) to obtain enhanced features. Finally, the weighted features are concatenated together and delivered into Support Vector Machine (SVM) network for classification. Experimental results show that the new approach can be an effective and reliable measure for monitoring fault.\",\"PeriodicalId\":153592,\"journal\":{\"name\":\"The Open Automation and Control Systems Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Automation and Control Systems Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874444301507011916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Automation and Control Systems Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874444301507011916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种基于局部二值模式(LBP)和Gabor-GA优化理论的列车中心板螺栓损耗故障检测方法。引入一种包含局部灰度差正负分量和幅值分量的改进LBP算子来提取更多的纹理信息。在图像上应用不同尺度和方向的多通道Gabor小波,在空间域中生成新的表示。然后,通过遗传算法(GA)优化每个Gabor通道的权重,获得增强特征。最后,将加权特征拼接在一起,传递给支持向量机(SVM)网络进行分类。实验结果表明,该方法是一种有效、可靠的故障监测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Detection of Train Center Plate Bolts Loss Using Modified LBP andOptimization Algorithm
This paper presents a novel approach to fault detection of train center plate bolts loss based on Local Binary Patterns (LBP) and Gabor-GA optimization theory. A modified LBP operator including the positive-negative sign and magnitude components of local gray difference is introduced to extract much more texture information. Multi-channel Gabor wavelet with different scales and orientations is applied on the images to create new representations in the spatial domain. Then, the weight of each Gabor channel can be optimized through the Genetic Algorithm (GA) to obtain enhanced features. Finally, the weighted features are concatenated together and delivered into Support Vector Machine (SVM) network for classification. Experimental results show that the new approach can be an effective and reliable measure for monitoring fault.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信