基于小波熵和改进阈值函数的PD信号白噪声抑制

Lu Guojun, Wang Yong, Luan Le, G. Shaofeng, Niu Haiqing, W. Xuemei
{"title":"基于小波熵和改进阈值函数的PD信号白噪声抑制","authors":"Lu Guojun, Wang Yong, Luan Le, G. Shaofeng, Niu Haiqing, W. Xuemei","doi":"10.1109/DEMPED.2017.8062397","DOIUrl":null,"url":null,"abstract":"Aiming at the shortcomings of traditional hard threshold method and soft threshold method, this paper puts forward a wavelet de-noising method based on wavelet entropy and improved threshold function. First, the noisy partial discharge (PD) signals are processed by wavelet decomposition, then the wavelet coefficients are processed by a new improved threshold function using adaptive selection of threshold based on wavelet entropy, finally the denoised signal can be got by reconstruction. The de-noising results of typical simulative signals and the field signals reveal that this present method can remove white noise effectively.","PeriodicalId":325413,"journal":{"name":"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Suppressing white noise in PD signal based on wavelet entropy and improved threshold function\",\"authors\":\"Lu Guojun, Wang Yong, Luan Le, G. Shaofeng, Niu Haiqing, W. Xuemei\",\"doi\":\"10.1109/DEMPED.2017.8062397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the shortcomings of traditional hard threshold method and soft threshold method, this paper puts forward a wavelet de-noising method based on wavelet entropy and improved threshold function. First, the noisy partial discharge (PD) signals are processed by wavelet decomposition, then the wavelet coefficients are processed by a new improved threshold function using adaptive selection of threshold based on wavelet entropy, finally the denoised signal can be got by reconstruction. The de-noising results of typical simulative signals and the field signals reveal that this present method can remove white noise effectively.\",\"PeriodicalId\":325413,\"journal\":{\"name\":\"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEMPED.2017.8062397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2017.8062397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对传统硬阈值法和软阈值法的不足,提出了一种基于小波熵和改进阈值函数的小波去噪方法。首先对局部放电信号进行小波分解,然后采用基于小波熵自适应选择阈值的改进阈值函数对小波系数进行处理,最后通过重构得到去噪后的局部放电信号。对典型仿真信号和现场信号的去噪结果表明,该方法能有效地去除白噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suppressing white noise in PD signal based on wavelet entropy and improved threshold function
Aiming at the shortcomings of traditional hard threshold method and soft threshold method, this paper puts forward a wavelet de-noising method based on wavelet entropy and improved threshold function. First, the noisy partial discharge (PD) signals are processed by wavelet decomposition, then the wavelet coefficients are processed by a new improved threshold function using adaptive selection of threshold based on wavelet entropy, finally the denoised signal can be got by reconstruction. The de-noising results of typical simulative signals and the field signals reveal that this present method can remove white noise effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信