基于深度学习的混合模糊测试

Fengjuan Gao, Yu Wang, Lingyun Situ, Linzhang Wang
{"title":"基于深度学习的混合模糊测试","authors":"Fengjuan Gao, Yu Wang, Lingyun Situ, Linzhang Wang","doi":"10.21655/ijsi.1673-7288.00261","DOIUrl":null,"url":null,"abstract":"With the rapid development of software techniques, domain-driven software raises new challenges in software security and robustness. Symbolic execution and fuzzing have been rapidly developed in recent decades, demonstrating their ability in detecting software bugs. Enormous detected and fixed bugs demonstrate their feasibility. However, it is still a challenging task to combine the two methods due to their corresponding weakness. State-of-the-art techniques focus on incorporating the two methods such as using symbolic execution to solve paths when fuzzing gets stuck in complex paths. Unfortunately, such methods are inefficient because they have to  基金项目: 国家自然科学基金(62032010); 江苏省研究生科研与实践创新计划 Foundation item: National Natural Science Foundation of China (62032010); Postgraduate Research & Practice Innovation Program of Jiangsu Province 本文由“面向领域的软件系统构造与质量保障”专题特约编辑潘敏学教授、魏峻研究员、崔展齐教授推荐. 收稿时间: 2020-09-13; 修改时间: 2020-10-26; 采用时间: 2020-12-19; jos 在线出版时间: 2021-01-22 or Rearch O ly 高凤娟 等:基于深度学习的混合模糊测试方法 989 switch to fuzzing (resp. symbolic execution) when conducting symbolic execution (resp. fuzzing). This paper presents a new deep learning-based hybrid testing method using symbolic execution and fuzzing. This method tries to predict paths that are suitable for fuzzing (resp. symbolic execution) and guide the fuzzing (resp. symbolic execution) to reach the paths. To further enhance the effectiveness, a hybrid mechanism is proposed to make them interact with each other. The proposed approach is evaluated on the programs in LAVA-M, and the results are compared with that using symbolic execution or fuzzing independently. The proposed method achieves more than 20% increase of branch coverage, 1 to 13 times increase of the path number, and uncover 929 more bugs.","PeriodicalId":218849,"journal":{"name":"Int. J. Softw. Informatics","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Hybrid Fuzz Testing\",\"authors\":\"Fengjuan Gao, Yu Wang, Lingyun Situ, Linzhang Wang\",\"doi\":\"10.21655/ijsi.1673-7288.00261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of software techniques, domain-driven software raises new challenges in software security and robustness. Symbolic execution and fuzzing have been rapidly developed in recent decades, demonstrating their ability in detecting software bugs. Enormous detected and fixed bugs demonstrate their feasibility. However, it is still a challenging task to combine the two methods due to their corresponding weakness. State-of-the-art techniques focus on incorporating the two methods such as using symbolic execution to solve paths when fuzzing gets stuck in complex paths. Unfortunately, such methods are inefficient because they have to  基金项目: 国家自然科学基金(62032010); 江苏省研究生科研与实践创新计划 Foundation item: National Natural Science Foundation of China (62032010); Postgraduate Research & Practice Innovation Program of Jiangsu Province 本文由“面向领域的软件系统构造与质量保障”专题特约编辑潘敏学教授、魏峻研究员、崔展齐教授推荐. 收稿时间: 2020-09-13; 修改时间: 2020-10-26; 采用时间: 2020-12-19; jos 在线出版时间: 2021-01-22 or Rearch O ly 高凤娟 等:基于深度学习的混合模糊测试方法 989 switch to fuzzing (resp. symbolic execution) when conducting symbolic execution (resp. fuzzing). This paper presents a new deep learning-based hybrid testing method using symbolic execution and fuzzing. This method tries to predict paths that are suitable for fuzzing (resp. symbolic execution) and guide the fuzzing (resp. symbolic execution) to reach the paths. To further enhance the effectiveness, a hybrid mechanism is proposed to make them interact with each other. The proposed approach is evaluated on the programs in LAVA-M, and the results are compared with that using symbolic execution or fuzzing independently. The proposed method achieves more than 20% increase of branch coverage, 1 to 13 times increase of the path number, and uncover 929 more bugs.\",\"PeriodicalId\":218849,\"journal\":{\"name\":\"Int. J. Softw. Informatics\",\"volume\":\"03 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21655/ijsi.1673-7288.00261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21655/ijsi.1673-7288.00261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着软件技术的飞速发展,领域驱动软件对软件的安全性和鲁棒性提出了新的挑战。符号执行和模糊测试在近几十年来得到了迅速发展,证明了它们在检测软件缺陷方面的能力。大量被发现和修复的bug证明了它们的可行性。然而,由于两种方法各自的缺点,将其结合起来仍然是一项具有挑战性的任务。最先进的技术侧重于将这两种方法结合起来,例如当模糊测试陷入复杂路径时,使用符号执行来解决路径。不幸的是,这种方法是低效的,因为它们必须要有这样的结果:基金项目:国家自然科学基金项目(62032010);江苏省研究生创新研究与实践项目本文由“面向领域的软件系统构造与质量保障”专题特约编辑潘敏学教授,魏峻研究员,崔展齐教授推荐。收稿时间: 2020-09-13; 修改时间: 2020-10-26; 采用时间: 2020-12-19; 乔斯在线出版时间:2021-01-22或研究O ly高凤娟等:基于深度学习的混合模糊测试方法989开关起毛(分别地。符号执行),当执行符号执行(如:起毛)。提出了一种基于符号执行和模糊测试的深度学习混合测试方法。这种方法试图预测适合模糊测试的路径。符号执行)和指导模糊测试(参见。符号执行)到达路径。为了进一步提高效率,提出了一种混合机制,使它们相互作用。在LAVA-M程序中对所提出的方法进行了评估,并与单独使用符号执行或模糊测试的结果进行了比较。该方法实现了分支覆盖率提高20%以上,路径数提高1 ~ 13倍,多发现929个bug。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Hybrid Fuzz Testing
With the rapid development of software techniques, domain-driven software raises new challenges in software security and robustness. Symbolic execution and fuzzing have been rapidly developed in recent decades, demonstrating their ability in detecting software bugs. Enormous detected and fixed bugs demonstrate their feasibility. However, it is still a challenging task to combine the two methods due to their corresponding weakness. State-of-the-art techniques focus on incorporating the two methods such as using symbolic execution to solve paths when fuzzing gets stuck in complex paths. Unfortunately, such methods are inefficient because they have to  基金项目: 国家自然科学基金(62032010); 江苏省研究生科研与实践创新计划 Foundation item: National Natural Science Foundation of China (62032010); Postgraduate Research & Practice Innovation Program of Jiangsu Province 本文由“面向领域的软件系统构造与质量保障”专题特约编辑潘敏学教授、魏峻研究员、崔展齐教授推荐. 收稿时间: 2020-09-13; 修改时间: 2020-10-26; 采用时间: 2020-12-19; jos 在线出版时间: 2021-01-22 or Rearch O ly 高凤娟 等:基于深度学习的混合模糊测试方法 989 switch to fuzzing (resp. symbolic execution) when conducting symbolic execution (resp. fuzzing). This paper presents a new deep learning-based hybrid testing method using symbolic execution and fuzzing. This method tries to predict paths that are suitable for fuzzing (resp. symbolic execution) and guide the fuzzing (resp. symbolic execution) to reach the paths. To further enhance the effectiveness, a hybrid mechanism is proposed to make them interact with each other. The proposed approach is evaluated on the programs in LAVA-M, and the results are compared with that using symbolic execution or fuzzing independently. The proposed method achieves more than 20% increase of branch coverage, 1 to 13 times increase of the path number, and uncover 929 more bugs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信