S. Wachenfeld, Stefan Fleischer, Hans-Ulrich Klein, Xiaoyi Jiang
{"title":"非常低分辨率屏幕渲染文本的分割","authors":"S. Wachenfeld, Stefan Fleischer, Hans-Ulrich Klein, Xiaoyi Jiang","doi":"10.1109/ICDAR.2007.229","DOIUrl":null,"url":null,"abstract":"The lower the resolution of a given text is, the more difficult it becomes to segment it into single characters. The resolution of screen-rendered text can be very low. This paper focuses on smoothed screen-rendered text of very low resolution with typical x-heights of 4 to 7 pixels which is much lower than in other low resolution OCR situations. We propose a recognition-based segmentation algorithm which makes use of over segmentation by dynamic programming, candidate rating by single character classifiers and a graph based search algorithm for an optimal cut sequence. The algorithm is described in detail and experimental results are presented which show the performance on example screen- shot images taken from the public Screen-Word database.","PeriodicalId":279268,"journal":{"name":"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Segmentation of Very Low Resolution Screen-Rendered Text\",\"authors\":\"S. Wachenfeld, Stefan Fleischer, Hans-Ulrich Klein, Xiaoyi Jiang\",\"doi\":\"10.1109/ICDAR.2007.229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lower the resolution of a given text is, the more difficult it becomes to segment it into single characters. The resolution of screen-rendered text can be very low. This paper focuses on smoothed screen-rendered text of very low resolution with typical x-heights of 4 to 7 pixels which is much lower than in other low resolution OCR situations. We propose a recognition-based segmentation algorithm which makes use of over segmentation by dynamic programming, candidate rating by single character classifiers and a graph based search algorithm for an optimal cut sequence. The algorithm is described in detail and experimental results are presented which show the performance on example screen- shot images taken from the public Screen-Word database.\",\"PeriodicalId\":279268,\"journal\":{\"name\":\"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2007.229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2007.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Segmentation of Very Low Resolution Screen-Rendered Text
The lower the resolution of a given text is, the more difficult it becomes to segment it into single characters. The resolution of screen-rendered text can be very low. This paper focuses on smoothed screen-rendered text of very low resolution with typical x-heights of 4 to 7 pixels which is much lower than in other low resolution OCR situations. We propose a recognition-based segmentation algorithm which makes use of over segmentation by dynamic programming, candidate rating by single character classifiers and a graph based search algorithm for an optimal cut sequence. The algorithm is described in detail and experimental results are presented which show the performance on example screen- shot images taken from the public Screen-Word database.