基于策略梯度DRL的多尺度卷积神经网络检测DDoS攻击

M. Ghanbari, W. Kinsner
{"title":"基于策略梯度DRL的多尺度卷积神经网络检测DDoS攻击","authors":"M. Ghanbari, W. Kinsner","doi":"10.1109/iccicc53683.2021.9811301","DOIUrl":null,"url":null,"abstract":"This paper presents a new architecture of a policy gradient based deep reinforcement learning (PGDRL) for detecting Internet traffic data (ITD) with distributed denial of service (DDoS) attacks (DDoS ITD) as unlabelled data. In this application, the main procedure in designing an intrusion detection system agent (IDSA) is policy approximation. Furthermore, a polyscale convolutional neural network (PCNN) is presented as a novel structure regarding the policy approximation. The IDSA aims to maximize its expected long-term rewards. Finally, the IDSA classification efficiency is assessed to find the detection rate of the proposed architecture. The PGDRL method detects the DDoS attack with almost 93% accuracy.","PeriodicalId":101653,"journal":{"name":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting DDoS Attacks Using a New Polyscale Convolutional Neural Network for Policy Gradient Based DRL\",\"authors\":\"M. Ghanbari, W. Kinsner\",\"doi\":\"10.1109/iccicc53683.2021.9811301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new architecture of a policy gradient based deep reinforcement learning (PGDRL) for detecting Internet traffic data (ITD) with distributed denial of service (DDoS) attacks (DDoS ITD) as unlabelled data. In this application, the main procedure in designing an intrusion detection system agent (IDSA) is policy approximation. Furthermore, a polyscale convolutional neural network (PCNN) is presented as a novel structure regarding the policy approximation. The IDSA aims to maximize its expected long-term rewards. Finally, the IDSA classification efficiency is assessed to find the detection rate of the proposed architecture. The PGDRL method detects the DDoS attack with almost 93% accuracy.\",\"PeriodicalId\":101653,\"journal\":{\"name\":\"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccicc53683.2021.9811301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccicc53683.2021.9811301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于策略梯度的深度强化学习(PGDRL)的新架构,用于检测分布式拒绝服务(DDoS)攻击(DDoS ITD)作为未标记数据的互联网流量数据(ITD)。在本应用中,设计入侵检测系统代理(IDSA)的主要过程是策略逼近。在此基础上,提出了一种多尺度卷积神经网络(PCNN)作为策略逼近的新结构。IDSA的目标是最大化其预期的长期回报。最后,对IDSA分类效率进行评估,得出所提架构的检测率。PGDRL检测DDoS攻击的准确率接近93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting DDoS Attacks Using a New Polyscale Convolutional Neural Network for Policy Gradient Based DRL
This paper presents a new architecture of a policy gradient based deep reinforcement learning (PGDRL) for detecting Internet traffic data (ITD) with distributed denial of service (DDoS) attacks (DDoS ITD) as unlabelled data. In this application, the main procedure in designing an intrusion detection system agent (IDSA) is policy approximation. Furthermore, a polyscale convolutional neural network (PCNN) is presented as a novel structure regarding the policy approximation. The IDSA aims to maximize its expected long-term rewards. Finally, the IDSA classification efficiency is assessed to find the detection rate of the proposed architecture. The PGDRL method detects the DDoS attack with almost 93% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信