螺旋无条纹编织图形设计

Rahul Mitra, L. Makatura, E. Whiting, Edward Chien
{"title":"螺旋无条纹编织图形设计","authors":"Rahul Mitra, L. Makatura, E. Whiting, Edward Chien","doi":"10.1145/3588432.3591564","DOIUrl":null,"url":null,"abstract":"The problem of placing evenly-spaced stripes on a triangular mesh mirrors that of having evenly-spaced course rows and wale columns in a knit graph for a given geometry. This work presents strategies for producing helix-free stripe patterns and traces them to produce helix-free knit graphs suitable for machine knitting. We optimize directly for the discrete differential (1-form) of the stripe texture function, i.e., the spinning form, and demonstrate the knitting-specific advantages of this framework. In particular, we note how simple linear constraints allow us to place stitch irregularities, align course rows and wale columns to boundary/feature curves, and eliminate helical stripes. Two mixed-integer optimization strategies using these constraints are presented and applied to several mesh models. The results are smooth, globally-informed, helix-free stripe patterns that we trace to produce machine-knittable graphs. We further provide an explicit characterization of helical stripes and a theoretical analysis of their elimination constraints.","PeriodicalId":280036,"journal":{"name":"ACM SIGGRAPH 2023 Conference Proceedings","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Helix-Free Stripes for Knit Graph Design\",\"authors\":\"Rahul Mitra, L. Makatura, E. Whiting, Edward Chien\",\"doi\":\"10.1145/3588432.3591564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of placing evenly-spaced stripes on a triangular mesh mirrors that of having evenly-spaced course rows and wale columns in a knit graph for a given geometry. This work presents strategies for producing helix-free stripe patterns and traces them to produce helix-free knit graphs suitable for machine knitting. We optimize directly for the discrete differential (1-form) of the stripe texture function, i.e., the spinning form, and demonstrate the knitting-specific advantages of this framework. In particular, we note how simple linear constraints allow us to place stitch irregularities, align course rows and wale columns to boundary/feature curves, and eliminate helical stripes. Two mixed-integer optimization strategies using these constraints are presented and applied to several mesh models. The results are smooth, globally-informed, helix-free stripe patterns that we trace to produce machine-knittable graphs. We further provide an explicit characterization of helical stripes and a theoretical analysis of their elimination constraints.\",\"PeriodicalId\":280036,\"journal\":{\"name\":\"ACM SIGGRAPH 2023 Conference Proceedings\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2023 Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3588432.3591564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2023 Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3588432.3591564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在三角形网格上放置均匀间隔的条纹的问题与在给定几何形状的编织图中放置均匀间隔的路线行和条纹列的问题相对应。本文提出了生产无螺旋条纹图案的策略,并对其进行了跟踪,以生产适合机器针织的无螺旋编织图。我们直接优化了条纹织构函数的离散微分(1-形式),即纺纱形式,并展示了该框架在针织方面的优势。特别是,我们注意到简单的线性约束如何允许我们放置缝线不规则性,将课程行和槽列对齐到边界/特征曲线,并消除螺旋条纹。利用这些约束条件,提出了两种混合整数优化策略,并应用于几种网格模型。结果是光滑的,全局信息,无螺旋条纹图案,我们追踪产生机器编织图形。我们进一步提供了一个明确的表征螺旋条纹和理论分析其消除约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Helix-Free Stripes for Knit Graph Design
The problem of placing evenly-spaced stripes on a triangular mesh mirrors that of having evenly-spaced course rows and wale columns in a knit graph for a given geometry. This work presents strategies for producing helix-free stripe patterns and traces them to produce helix-free knit graphs suitable for machine knitting. We optimize directly for the discrete differential (1-form) of the stripe texture function, i.e., the spinning form, and demonstrate the knitting-specific advantages of this framework. In particular, we note how simple linear constraints allow us to place stitch irregularities, align course rows and wale columns to boundary/feature curves, and eliminate helical stripes. Two mixed-integer optimization strategies using these constraints are presented and applied to several mesh models. The results are smooth, globally-informed, helix-free stripe patterns that we trace to produce machine-knittable graphs. We further provide an explicit characterization of helical stripes and a theoretical analysis of their elimination constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信