显式函数电路复杂度的一个优于3n的下界

Magnus Find, Alexander Golovnev, E. Hirsch, A. Kulikov
{"title":"显式函数电路复杂度的一个优于3n的下界","authors":"Magnus Find, Alexander Golovnev, E. Hirsch, A. Kulikov","doi":"10.1109/FOCS.2016.19","DOIUrl":null,"url":null,"abstract":"We consider Boolean circuits over the full binary basis. We prove a (3+1/86)n-o(n) lower bound on the size of such a circuit for an explicitly defined predicate, namely an affine disperser for sublinear dimension. This improves the 3n-o(n) bound of Norbert Blum (1984).The proof is based on the gate elimination technique extended with the following three ideas. We generalize the computational model by allowing circuits to contain cycles, this in turn allows us to perform affine substitutions. We use a carefully chosen circuit complexity measure to track the progress of the gate elimination process. Finally, we use quadratic substitutions that may be viewed as delayed affine substitutions.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"A Better-Than-3n Lower Bound for the Circuit Complexity of an Explicit Function\",\"authors\":\"Magnus Find, Alexander Golovnev, E. Hirsch, A. Kulikov\",\"doi\":\"10.1109/FOCS.2016.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Boolean circuits over the full binary basis. We prove a (3+1/86)n-o(n) lower bound on the size of such a circuit for an explicitly defined predicate, namely an affine disperser for sublinear dimension. This improves the 3n-o(n) bound of Norbert Blum (1984).The proof is based on the gate elimination technique extended with the following three ideas. We generalize the computational model by allowing circuits to contain cycles, this in turn allows us to perform affine substitutions. We use a carefully chosen circuit complexity measure to track the progress of the gate elimination process. Finally, we use quadratic substitutions that may be viewed as delayed affine substitutions.\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

我们考虑在全二进制基上的布尔电路。对于一个明确定义的谓词,即次线性维的仿射分散子,我们证明了这种电路大小的(3+1/86)n-o(n)下界。这改进了Norbert Blum(1984)的3n-o(n)界。证明是基于栅极消除技术,扩展了以下三个思想。我们通过允许电路包含周期来推广计算模型,这反过来又允许我们执行仿射替换。我们使用一种精心选择的电路复杂性度量来跟踪栅极消除过程的进展。最后,我们使用二次代入,可以看作是延迟仿射代入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Better-Than-3n Lower Bound for the Circuit Complexity of an Explicit Function
We consider Boolean circuits over the full binary basis. We prove a (3+1/86)n-o(n) lower bound on the size of such a circuit for an explicitly defined predicate, namely an affine disperser for sublinear dimension. This improves the 3n-o(n) bound of Norbert Blum (1984).The proof is based on the gate elimination technique extended with the following three ideas. We generalize the computational model by allowing circuits to contain cycles, this in turn allows us to perform affine substitutions. We use a carefully chosen circuit complexity measure to track the progress of the gate elimination process. Finally, we use quadratic substitutions that may be viewed as delayed affine substitutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信