基于Gabor特征的贝叶斯人脸识别

Xiaogang Wang, Xiaoou Tang
{"title":"基于Gabor特征的贝叶斯人脸识别","authors":"Xiaogang Wang, Xiaoou Tang","doi":"10.1145/982507.982521","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new face recognition approach combining a Bayesian probabilistic model and Gabor filter responses. Since both the Bayesian algorithm and the Gabor features can reduce intrapersonal variation through different mechanisms, we integrate the two methods to take full advantage of both approaches. The efficacy of the new method is demonstrated by the experiments on 1180 face images from the XM2VTS database and 1260 face images from the AR database.","PeriodicalId":228135,"journal":{"name":"Workshop Brasileira em Métodos Agile / Brazilian Workshop on Agile Methods","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Bayesian face recognition using Gabor features\",\"authors\":\"Xiaogang Wang, Xiaoou Tang\",\"doi\":\"10.1145/982507.982521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new face recognition approach combining a Bayesian probabilistic model and Gabor filter responses. Since both the Bayesian algorithm and the Gabor features can reduce intrapersonal variation through different mechanisms, we integrate the two methods to take full advantage of both approaches. The efficacy of the new method is demonstrated by the experiments on 1180 face images from the XM2VTS database and 1260 face images from the AR database.\",\"PeriodicalId\":228135,\"journal\":{\"name\":\"Workshop Brasileira em Métodos Agile / Brazilian Workshop on Agile Methods\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop Brasileira em Métodos Agile / Brazilian Workshop on Agile Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/982507.982521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop Brasileira em Métodos Agile / Brazilian Workshop on Agile Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/982507.982521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

本文提出了一种结合贝叶斯概率模型和Gabor滤波器响应的人脸识别方法。由于贝叶斯算法和Gabor特征都可以通过不同的机制来减少个人变异,因此我们将这两种方法结合起来,充分利用这两种方法的优势。通过对来自XM2VTS数据库的1180张人脸图像和来自AR数据库的1260张人脸图像进行实验,验证了新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian face recognition using Gabor features
In this paper, we propose a new face recognition approach combining a Bayesian probabilistic model and Gabor filter responses. Since both the Bayesian algorithm and the Gabor features can reduce intrapersonal variation through different mechanisms, we integrate the two methods to take full advantage of both approaches. The efficacy of the new method is demonstrated by the experiments on 1180 face images from the XM2VTS database and 1260 face images from the AR database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信