基于PCA的单层云类型图像分类

ImranSarwar Bajwa, S. Hyder
{"title":"基于PCA的单层云类型图像分类","authors":"ImranSarwar Bajwa, S. Hyder","doi":"10.1109/ICET.2005.1558909","DOIUrl":null,"url":null,"abstract":"The paper presents an automatic classification system, which discriminates the different types of single-layered clouds using principal component analysis (PCA) with enhanced accuracy as compared to other techniques. PCA is an image classification technique typically used for face recognition. Principal components are the distinctive or peculiar features of an image. The approach described in this paper uses this PCA capability for enhancing the accuracy of cloud image analysis. To demonstrate this enhancement, a software classifier system has been developed that incorporates PCA capability for better discrimination of cloud images. The system is first trained using cloud images. In training phase, system reads major principal features of the different cloud images to produce an image space. In testing phase, a new cloud image can be classified by comparing it with the specified image space using the PCA algorithm.","PeriodicalId":222828,"journal":{"name":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"PCA based image classification of single-layered cloud types\",\"authors\":\"ImranSarwar Bajwa, S. Hyder\",\"doi\":\"10.1109/ICET.2005.1558909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an automatic classification system, which discriminates the different types of single-layered clouds using principal component analysis (PCA) with enhanced accuracy as compared to other techniques. PCA is an image classification technique typically used for face recognition. Principal components are the distinctive or peculiar features of an image. The approach described in this paper uses this PCA capability for enhancing the accuracy of cloud image analysis. To demonstrate this enhancement, a software classifier system has been developed that incorporates PCA capability for better discrimination of cloud images. The system is first trained using cloud images. In training phase, system reads major principal features of the different cloud images to produce an image space. In testing phase, a new cloud image can be classified by comparing it with the specified image space using the PCA algorithm.\",\"PeriodicalId\":222828,\"journal\":{\"name\":\"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICET.2005.1558909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2005.1558909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种自动分类系统,该系统利用主成分分析(PCA)对不同类型的单层云进行区分,与其他技术相比,准确率更高。PCA是一种图像分类技术,通常用于人脸识别。主成分是图像的独特或独特的特征。本文描述的方法利用这种PCA能力来提高云图像分析的准确性。为了证明这种增强,开发了一个软件分类器系统,该系统结合了PCA功能,可以更好地识别云图像。该系统首先使用云图像进行训练。在训练阶段,系统读取不同云图像的主要特征,生成图像空间。在测试阶段,使用PCA算法将新的云图像与指定的图像空间进行比较,从而对新的云图像进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PCA based image classification of single-layered cloud types
The paper presents an automatic classification system, which discriminates the different types of single-layered clouds using principal component analysis (PCA) with enhanced accuracy as compared to other techniques. PCA is an image classification technique typically used for face recognition. Principal components are the distinctive or peculiar features of an image. The approach described in this paper uses this PCA capability for enhancing the accuracy of cloud image analysis. To demonstrate this enhancement, a software classifier system has been developed that incorporates PCA capability for better discrimination of cloud images. The system is first trained using cloud images. In training phase, system reads major principal features of the different cloud images to produce an image space. In testing phase, a new cloud image can be classified by comparing it with the specified image space using the PCA algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信