一种具有10.5nJ启动能量晶体振荡器的低功耗蓝牙低能量发射器

Omar Abdelatty, Henry L. Bishop, Yao Shi, Xing Chen, A. Alghaihab, B. Calhoun, D. Wentzloff
{"title":"一种具有10.5nJ启动能量晶体振荡器的低功耗蓝牙低能量发射器","authors":"Omar Abdelatty, Henry L. Bishop, Yao Shi, Xing Chen, A. Alghaihab, B. Calhoun, D. Wentzloff","doi":"10.1109/ESSCIRC.2019.8902902","DOIUrl":null,"url":null,"abstract":"This paper presents a low power, fully-integrated Bluetooth Low-Energy (BLE) transmitter (TX) for Internet-of-Things (IoT) applications. The complete BLE TX achieves a total energy per bit of 3.5nJ in an open-loop transmission scheme due to the ultra-low startup energy of the system. The overall system architecture of the BLE TX includes an RF front-end, a 16 MHz crystal oscillator (XO), a GFSK modulator, and a digital baseband including a SPI interface. An enhanced capacitively loaded three-stage inverter chain XO is proposed, featuring a 10.2nJ startup-energy, a 150μs startup time, and a 70μW steady-state power. The steady-state frequency inaccuracy of the XO is 14 ppm with less than 26ps cycle-to-cycle jitter. The BLE TX is fabricated in 65nm CMOS technology and it consumes an average power of 2.17mW to transmit an advertisement packet consisting of 368 bits entirely over 600μs including the startup time. Duty-cycling operation is implemented through power gating achieving an average power consumption of 3.72μW (1.86× sleep power) when transmitting a BLE advertising message every 753ms. In our target application, by using these techniques, we are able to extend a common coin battery’s lifetime to more than 20 years.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Low Power Bluetooth Low-Energy Transmitter with a 10.5nJ Startup-Energy Crystal Oscillator\",\"authors\":\"Omar Abdelatty, Henry L. Bishop, Yao Shi, Xing Chen, A. Alghaihab, B. Calhoun, D. Wentzloff\",\"doi\":\"10.1109/ESSCIRC.2019.8902902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a low power, fully-integrated Bluetooth Low-Energy (BLE) transmitter (TX) for Internet-of-Things (IoT) applications. The complete BLE TX achieves a total energy per bit of 3.5nJ in an open-loop transmission scheme due to the ultra-low startup energy of the system. The overall system architecture of the BLE TX includes an RF front-end, a 16 MHz crystal oscillator (XO), a GFSK modulator, and a digital baseband including a SPI interface. An enhanced capacitively loaded three-stage inverter chain XO is proposed, featuring a 10.2nJ startup-energy, a 150μs startup time, and a 70μW steady-state power. The steady-state frequency inaccuracy of the XO is 14 ppm with less than 26ps cycle-to-cycle jitter. The BLE TX is fabricated in 65nm CMOS technology and it consumes an average power of 2.17mW to transmit an advertisement packet consisting of 368 bits entirely over 600μs including the startup time. Duty-cycling operation is implemented through power gating achieving an average power consumption of 3.72μW (1.86× sleep power) when transmitting a BLE advertising message every 753ms. In our target application, by using these techniques, we are able to extend a common coin battery’s lifetime to more than 20 years.\",\"PeriodicalId\":402948,\"journal\":{\"name\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2019.8902902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文介绍了一种低功耗,完全集成的蓝牙低功耗(BLE)发射器(TX),用于物联网(IoT)应用。由于系统的启动能量极低,在开环传输方案中,完整的BLE TX每比特的总能量为3.5nJ。BLE TX的整体系统架构包括射频前端、16 MHz晶体振荡器(XO)、GFSK调制器和包含SPI接口的数字基带。提出了一种增强型电容负载三级逆变器链XO,其启动能量为10.2nJ,启动时间为150μs,稳态功率为70μW。XO的稳态频率误差为14 ppm,周期到周期抖动小于26ps。BLE TX采用65nm CMOS技术,在600μs(包括启动时间)内传输368位的广告包,平均功耗为2.17mW。当每753ms发送一个BLE广告消息时,通过功率门控实现占空比操作,平均功耗为3.72μW(1.86倍睡眠功率)。在我们的目标应用中,通过使用这些技术,我们能够将普通硬币电池的使用寿命延长到20年以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Low Power Bluetooth Low-Energy Transmitter with a 10.5nJ Startup-Energy Crystal Oscillator
This paper presents a low power, fully-integrated Bluetooth Low-Energy (BLE) transmitter (TX) for Internet-of-Things (IoT) applications. The complete BLE TX achieves a total energy per bit of 3.5nJ in an open-loop transmission scheme due to the ultra-low startup energy of the system. The overall system architecture of the BLE TX includes an RF front-end, a 16 MHz crystal oscillator (XO), a GFSK modulator, and a digital baseband including a SPI interface. An enhanced capacitively loaded three-stage inverter chain XO is proposed, featuring a 10.2nJ startup-energy, a 150μs startup time, and a 70μW steady-state power. The steady-state frequency inaccuracy of the XO is 14 ppm with less than 26ps cycle-to-cycle jitter. The BLE TX is fabricated in 65nm CMOS technology and it consumes an average power of 2.17mW to transmit an advertisement packet consisting of 368 bits entirely over 600μs including the startup time. Duty-cycling operation is implemented through power gating achieving an average power consumption of 3.72μW (1.86× sleep power) when transmitting a BLE advertising message every 753ms. In our target application, by using these techniques, we are able to extend a common coin battery’s lifetime to more than 20 years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信