{"title":"集成多重评分函数,提高蛋白质环结构构象空间采样","authors":"Yaohang Li, I. Rata, E. Jakobsson","doi":"10.1109/CIBCB.2010.5510687","DOIUrl":null,"url":null,"abstract":"In this article, we present a new protein structure modeling approach based on multi-scoring functions sampling. The rationale is to integrate multiple carefully-selected physics-or knowledge-based scoring functions to tolerate insensitivity and inaccuracy existing in an individual scoring function so as to improve protein structure modeling accuracy. We apply the multi-scoring function sampling approach to protein loop backbone structure modeling. Our computational results show that sampling the scoring function space of a physics-based soft-sphere potential function and a knowledge-based scoring function based on pairwise atoms distance has led to resolution improvement in the predicted decoy populations in a set of 12-residue benchmark loop targets.","PeriodicalId":340637,"journal":{"name":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Integrating multiple scoring functions to improve protein loop structure conformation space sampling\",\"authors\":\"Yaohang Li, I. Rata, E. Jakobsson\",\"doi\":\"10.1109/CIBCB.2010.5510687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present a new protein structure modeling approach based on multi-scoring functions sampling. The rationale is to integrate multiple carefully-selected physics-or knowledge-based scoring functions to tolerate insensitivity and inaccuracy existing in an individual scoring function so as to improve protein structure modeling accuracy. We apply the multi-scoring function sampling approach to protein loop backbone structure modeling. Our computational results show that sampling the scoring function space of a physics-based soft-sphere potential function and a knowledge-based scoring function based on pairwise atoms distance has led to resolution improvement in the predicted decoy populations in a set of 12-residue benchmark loop targets.\",\"PeriodicalId\":340637,\"journal\":{\"name\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2010.5510687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2010.5510687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrating multiple scoring functions to improve protein loop structure conformation space sampling
In this article, we present a new protein structure modeling approach based on multi-scoring functions sampling. The rationale is to integrate multiple carefully-selected physics-or knowledge-based scoring functions to tolerate insensitivity and inaccuracy existing in an individual scoring function so as to improve protein structure modeling accuracy. We apply the multi-scoring function sampling approach to protein loop backbone structure modeling. Our computational results show that sampling the scoring function space of a physics-based soft-sphere potential function and a knowledge-based scoring function based on pairwise atoms distance has led to resolution improvement in the predicted decoy populations in a set of 12-residue benchmark loop targets.