集成多重评分函数,提高蛋白质环结构构象空间采样

Yaohang Li, I. Rata, E. Jakobsson
{"title":"集成多重评分函数,提高蛋白质环结构构象空间采样","authors":"Yaohang Li, I. Rata, E. Jakobsson","doi":"10.1109/CIBCB.2010.5510687","DOIUrl":null,"url":null,"abstract":"In this article, we present a new protein structure modeling approach based on multi-scoring functions sampling. The rationale is to integrate multiple carefully-selected physics-or knowledge-based scoring functions to tolerate insensitivity and inaccuracy existing in an individual scoring function so as to improve protein structure modeling accuracy. We apply the multi-scoring function sampling approach to protein loop backbone structure modeling. Our computational results show that sampling the scoring function space of a physics-based soft-sphere potential function and a knowledge-based scoring function based on pairwise atoms distance has led to resolution improvement in the predicted decoy populations in a set of 12-residue benchmark loop targets.","PeriodicalId":340637,"journal":{"name":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Integrating multiple scoring functions to improve protein loop structure conformation space sampling\",\"authors\":\"Yaohang Li, I. Rata, E. Jakobsson\",\"doi\":\"10.1109/CIBCB.2010.5510687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present a new protein structure modeling approach based on multi-scoring functions sampling. The rationale is to integrate multiple carefully-selected physics-or knowledge-based scoring functions to tolerate insensitivity and inaccuracy existing in an individual scoring function so as to improve protein structure modeling accuracy. We apply the multi-scoring function sampling approach to protein loop backbone structure modeling. Our computational results show that sampling the scoring function space of a physics-based soft-sphere potential function and a knowledge-based scoring function based on pairwise atoms distance has led to resolution improvement in the predicted decoy populations in a set of 12-residue benchmark loop targets.\",\"PeriodicalId\":340637,\"journal\":{\"name\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2010.5510687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2010.5510687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于多重评分函数采样的蛋白质结构建模方法。其基本原理是整合多个精心挑选的物理或基于知识的评分函数,以容忍单个评分函数存在的不敏感性和不准确性,从而提高蛋白质结构建模的准确性。我们将多重评分函数采样方法应用于蛋白质环主链结构建模。我们的计算结果表明,对基于物理的软球势函数和基于成对原子距离的基于知识的评分函数的评分函数空间进行采样,可以提高12个残基基准环目标中预测诱饵种群的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating multiple scoring functions to improve protein loop structure conformation space sampling
In this article, we present a new protein structure modeling approach based on multi-scoring functions sampling. The rationale is to integrate multiple carefully-selected physics-or knowledge-based scoring functions to tolerate insensitivity and inaccuracy existing in an individual scoring function so as to improve protein structure modeling accuracy. We apply the multi-scoring function sampling approach to protein loop backbone structure modeling. Our computational results show that sampling the scoring function space of a physics-based soft-sphere potential function and a knowledge-based scoring function based on pairwise atoms distance has led to resolution improvement in the predicted decoy populations in a set of 12-residue benchmark loop targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信