基于Android API BM25评分的Android恶意软件分类与优化

Rahul Yumlembam, B. Issac, Longzhi Yang, S. M. Jacob
{"title":"基于Android API BM25评分的Android恶意软件分类与优化","authors":"Rahul Yumlembam, B. Issac, Longzhi Yang, S. M. Jacob","doi":"10.1109/INFOCOMWKSHPS57453.2023.10226039","DOIUrl":null,"url":null,"abstract":"With the growth of Android devices, there is a rise in malware applications affecting these networked devices. Android malware classification is an important task in ensuring the security and privacy of Android devices. One promising approach to this problem is to capture the difference in the usage of API in benign and malware applications through the BM25 (Best Matching 25) scoring function by calculating the BM25 score of each API (Application Program Interface). A linear regression model is fitted using the BM25 score to select the 1000 most important APIs using the feature importance weight of the linear regression model. The selected API's BM25 score and the Permission and Intents of an application are used to train Naive Bayes, Random Forest, Decision Tree, Support Vector Machine, and CNN (Convolutional Neural Network) for classification. To illustrate the effectiveness of using the BM25 score of APIs for malware classification, we train the optimised Particle Swarm Optimisation (PSO) based Machine learning and Deep Learning algorithms using Permission and Intents features with and without the BM25 score. Experiments show that the BM25 score improves the result. Overall, this study demonstrates the potential of using the BM25 score of API calls, in combination with Permissions and Intents, as a valuable tool for Android malware classification.","PeriodicalId":354290,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Android Malware Classification and Optimisation Based on BM25 Score of Android API\",\"authors\":\"Rahul Yumlembam, B. Issac, Longzhi Yang, S. M. Jacob\",\"doi\":\"10.1109/INFOCOMWKSHPS57453.2023.10226039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growth of Android devices, there is a rise in malware applications affecting these networked devices. Android malware classification is an important task in ensuring the security and privacy of Android devices. One promising approach to this problem is to capture the difference in the usage of API in benign and malware applications through the BM25 (Best Matching 25) scoring function by calculating the BM25 score of each API (Application Program Interface). A linear regression model is fitted using the BM25 score to select the 1000 most important APIs using the feature importance weight of the linear regression model. The selected API's BM25 score and the Permission and Intents of an application are used to train Naive Bayes, Random Forest, Decision Tree, Support Vector Machine, and CNN (Convolutional Neural Network) for classification. To illustrate the effectiveness of using the BM25 score of APIs for malware classification, we train the optimised Particle Swarm Optimisation (PSO) based Machine learning and Deep Learning algorithms using Permission and Intents features with and without the BM25 score. Experiments show that the BM25 score improves the result. Overall, this study demonstrates the potential of using the BM25 score of API calls, in combination with Permissions and Intents, as a valuable tool for Android malware classification.\",\"PeriodicalId\":354290,\"journal\":{\"name\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10226039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10226039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着Android设备的增长,影响这些联网设备的恶意软件应用也在增加。Android恶意软件分类是保障Android设备安全与隐私的一项重要任务。解决这个问题的一个很有希望的方法是,通过计算每个API(应用程序接口)的BM25分数,通过BM25(最佳匹配25)评分函数来捕捉良性和恶意应用程序中API使用的差异。利用BM25分数拟合线性回归模型,利用线性回归模型的特征重要性权重选择1000个最重要的api。所选API的BM25分数和应用程序的权限和意图用于训练朴素贝叶斯、随机森林、决策树、支持向量机和CNN(卷积神经网络)进行分类。为了说明使用api的BM25分数进行恶意软件分类的有效性,我们使用带有和不带有BM25分数的Permission和intent特征来训练优化的基于粒子群优化(PSO)的机器学习和深度学习算法。实验表明,BM25分数提高了结果。总的来说,这项研究证明了使用API调用的BM25评分的潜力,结合权限和意图,作为Android恶意软件分类的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Android Malware Classification and Optimisation Based on BM25 Score of Android API
With the growth of Android devices, there is a rise in malware applications affecting these networked devices. Android malware classification is an important task in ensuring the security and privacy of Android devices. One promising approach to this problem is to capture the difference in the usage of API in benign and malware applications through the BM25 (Best Matching 25) scoring function by calculating the BM25 score of each API (Application Program Interface). A linear regression model is fitted using the BM25 score to select the 1000 most important APIs using the feature importance weight of the linear regression model. The selected API's BM25 score and the Permission and Intents of an application are used to train Naive Bayes, Random Forest, Decision Tree, Support Vector Machine, and CNN (Convolutional Neural Network) for classification. To illustrate the effectiveness of using the BM25 score of APIs for malware classification, we train the optimised Particle Swarm Optimisation (PSO) based Machine learning and Deep Learning algorithms using Permission and Intents features with and without the BM25 score. Experiments show that the BM25 score improves the result. Overall, this study demonstrates the potential of using the BM25 score of API calls, in combination with Permissions and Intents, as a valuable tool for Android malware classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信