多视图关系的鲁棒计算和参数化

P. Torr, Andrew Zisserman
{"title":"多视图关系的鲁棒计算和参数化","authors":"P. Torr, Andrew Zisserman","doi":"10.1109/ICCV.1998.710798","DOIUrl":null,"url":null,"abstract":"A new method is presented for robustly estimating multiple view relations from image point correspondences. There are three new contributions, the first is a general purpose method of parametrizing these relations using point correspondences. The second contribution is the formulation of a common Maximum Likelihood Estimate (MLE) for each of the multiple view relations. The parametrization facilitates a constrained optimization to obtain this MLE. The third contribution is a new robust algorithm, MLESAC, for obtaining the point correspondences. The method is general and its use is illustrated for the estimation of fundamental matrices, image to image homographies and quadratic transformations. Results are given for both synthetic and real images. It is demonstrated that the method gives results equal or superior to previous approaches.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"221","resultStr":"{\"title\":\"Robust computation and parametrization of multiple view relations\",\"authors\":\"P. Torr, Andrew Zisserman\",\"doi\":\"10.1109/ICCV.1998.710798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method is presented for robustly estimating multiple view relations from image point correspondences. There are three new contributions, the first is a general purpose method of parametrizing these relations using point correspondences. The second contribution is the formulation of a common Maximum Likelihood Estimate (MLE) for each of the multiple view relations. The parametrization facilitates a constrained optimization to obtain this MLE. The third contribution is a new robust algorithm, MLESAC, for obtaining the point correspondences. The method is general and its use is illustrated for the estimation of fundamental matrices, image to image homographies and quadratic transformations. Results are given for both synthetic and real images. It is demonstrated that the method gives results equal or superior to previous approaches.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"221\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 221

摘要

提出了一种从图像点对应中鲁棒估计多视图关系的新方法。有三个新的贡献,第一个是使用点对应参数化这些关系的通用方法。第二个贡献是为每个多视图关系制定公共的最大似然估计(MLE)。参数化有利于约束优化以获得该最大似是数。第三个贡献是一种新的鲁棒算法MLESAC,用于获取点对应。该方法是通用的,并说明了它在基本矩阵估计、像到像同列和二次变换等方面的应用。给出了合成图像和真实图像的结果。结果表明,该方法得到的结果等于或优于以往的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust computation and parametrization of multiple view relations
A new method is presented for robustly estimating multiple view relations from image point correspondences. There are three new contributions, the first is a general purpose method of parametrizing these relations using point correspondences. The second contribution is the formulation of a common Maximum Likelihood Estimate (MLE) for each of the multiple view relations. The parametrization facilitates a constrained optimization to obtain this MLE. The third contribution is a new robust algorithm, MLESAC, for obtaining the point correspondences. The method is general and its use is illustrated for the estimation of fundamental matrices, image to image homographies and quadratic transformations. Results are given for both synthetic and real images. It is demonstrated that the method gives results equal or superior to previous approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信