利用领域知识改进机器学习

Tim Rensmeyer, S. Multaheb, Julian Putzke, Bernd Zimmering
{"title":"利用领域知识改进机器学习","authors":"Tim Rensmeyer, S. Multaheb, Julian Putzke, Bernd Zimmering","doi":"10.17560/atp.v63i9.2600","DOIUrl":null,"url":null,"abstract":"Machine Learning methods have achieved some impressive results over the past decade. However, this success was in large part a result of utilizing large amounts of data and growing computational resources efficiently. To extend this recent success to domains where large quantities of high-quality data are not readily available, the field of informed machine learning has emerged, which aims at integrating preexisting knowledge into machine learning models. The aim of this paper is to provide an overview of the major new developments in this field and to discuss important open problems.","PeriodicalId":263160,"journal":{"name":"atp magazin","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Domain-Knowledge to Improve Machine Learning\",\"authors\":\"Tim Rensmeyer, S. Multaheb, Julian Putzke, Bernd Zimmering\",\"doi\":\"10.17560/atp.v63i9.2600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning methods have achieved some impressive results over the past decade. However, this success was in large part a result of utilizing large amounts of data and growing computational resources efficiently. To extend this recent success to domains where large quantities of high-quality data are not readily available, the field of informed machine learning has emerged, which aims at integrating preexisting knowledge into machine learning models. The aim of this paper is to provide an overview of the major new developments in this field and to discuss important open problems.\",\"PeriodicalId\":263160,\"journal\":{\"name\":\"atp magazin\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"atp magazin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17560/atp.v63i9.2600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"atp magazin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17560/atp.v63i9.2600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习方法在过去十年中取得了一些令人印象深刻的成果。然而,这一成功在很大程度上是有效利用大量数据和不断增长的计算资源的结果。为了将这一最近的成功扩展到大量高质量数据不易获得的领域,知情机器学习领域已经出现,其目的是将已有的知识集成到机器学习模型中。本文的目的是概述该领域的主要新发展,并讨论重要的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Domain-Knowledge to Improve Machine Learning
Machine Learning methods have achieved some impressive results over the past decade. However, this success was in large part a result of utilizing large amounts of data and growing computational resources efficiently. To extend this recent success to domains where large quantities of high-quality data are not readily available, the field of informed machine learning has emerged, which aims at integrating preexisting knowledge into machine learning models. The aim of this paper is to provide an overview of the major new developments in this field and to discuss important open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信