{"title":"多智能体开放框架:开发解决MAPF的整体系统(学生摘要)","authors":"Enrico Saccon","doi":"10.1609/socs.v16i1.27312","DOIUrl":null,"url":null,"abstract":"Automation in industries is becoming an ever-increasing necessity, especially in the sector of logistics. In many cases, this means having many different automated guided vehicles (AGVs) moving at the same time, hence needing coordination to avoid conflicts between different agents. The problem of organizing a fleet of autonomous robots is known as the Multi-Agent Path Finding (MAPF) problem in the literature for which several optimal and sub-optimal algorithms have been proposed. When faced with real-life scenarios, these algorithms must provide the best feasible solution in the shortest time possible, therefore they must scale for large scenarios and be efficient. In this work, we briefly describe our open-source framework we are working on and we lay down the research paths we are going to focus on. The goal is to develop a holistic system that allows to control different aspects of the MAPF problem, from graph topology to goal scheduling.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Agent Open Framework: Developing a Holistic System to Solve MAPF (Student Abstract)\",\"authors\":\"Enrico Saccon\",\"doi\":\"10.1609/socs.v16i1.27312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automation in industries is becoming an ever-increasing necessity, especially in the sector of logistics. In many cases, this means having many different automated guided vehicles (AGVs) moving at the same time, hence needing coordination to avoid conflicts between different agents. The problem of organizing a fleet of autonomous robots is known as the Multi-Agent Path Finding (MAPF) problem in the literature for which several optimal and sub-optimal algorithms have been proposed. When faced with real-life scenarios, these algorithms must provide the best feasible solution in the shortest time possible, therefore they must scale for large scenarios and be efficient. In this work, we briefly describe our open-source framework we are working on and we lay down the research paths we are going to focus on. The goal is to develop a holistic system that allows to control different aspects of the MAPF problem, from graph topology to goal scheduling.\",\"PeriodicalId\":425645,\"journal\":{\"name\":\"Symposium on Combinatorial Search\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Combinatorial Search\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/socs.v16i1.27312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v16i1.27312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Agent Open Framework: Developing a Holistic System to Solve MAPF (Student Abstract)
Automation in industries is becoming an ever-increasing necessity, especially in the sector of logistics. In many cases, this means having many different automated guided vehicles (AGVs) moving at the same time, hence needing coordination to avoid conflicts between different agents. The problem of organizing a fleet of autonomous robots is known as the Multi-Agent Path Finding (MAPF) problem in the literature for which several optimal and sub-optimal algorithms have been proposed. When faced with real-life scenarios, these algorithms must provide the best feasible solution in the shortest time possible, therefore they must scale for large scenarios and be efficient. In this work, we briefly describe our open-source framework we are working on and we lay down the research paths we are going to focus on. The goal is to develop a holistic system that allows to control different aspects of the MAPF problem, from graph topology to goal scheduling.