{"title":"无线传感器网络鲁棒高效数据采集","authors":"L. Gatani, G. Re, M. Ortolani","doi":"10.1109/HICSS.2006.425","DOIUrl":null,"url":null,"abstract":"This paper describes a new strategy for data gathering in wireless sensor networks that takes into account the need for both energy saving, typical of such networks, and for a reasonable tradeoff between robustness and efficiency. The proposed algorithm implements an efficient strategy for retransmission of lost packets by discovering alternative routes and making clever use of multiple paths when necessary; in order to do that we build upon the general framework presented in recent works, that provided a formulation of duplicate and order insensitive aggregation functions, and by taking advantage of some intrinsic characteristics of the wireless sensor networks, we exploit implicit acknowledgment of reception and smart caching of the data. Assuming that, unlike in an ideal scenario, data originates from only a subset of all sensors, our approach provides a better usage of the resources and a minimization of the traffic in the network, and, as a consequence, of the overall consumed energy.","PeriodicalId":432250,"journal":{"name":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","volume":"2635 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Robust and Efficient Data Gathering for Wireless Sensor Networks\",\"authors\":\"L. Gatani, G. Re, M. Ortolani\",\"doi\":\"10.1109/HICSS.2006.425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new strategy for data gathering in wireless sensor networks that takes into account the need for both energy saving, typical of such networks, and for a reasonable tradeoff between robustness and efficiency. The proposed algorithm implements an efficient strategy for retransmission of lost packets by discovering alternative routes and making clever use of multiple paths when necessary; in order to do that we build upon the general framework presented in recent works, that provided a formulation of duplicate and order insensitive aggregation functions, and by taking advantage of some intrinsic characteristics of the wireless sensor networks, we exploit implicit acknowledgment of reception and smart caching of the data. Assuming that, unlike in an ideal scenario, data originates from only a subset of all sensors, our approach provides a better usage of the resources and a minimization of the traffic in the network, and, as a consequence, of the overall consumed energy.\",\"PeriodicalId\":432250,\"journal\":{\"name\":\"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)\",\"volume\":\"2635 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HICSS.2006.425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2006.425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust and Efficient Data Gathering for Wireless Sensor Networks
This paper describes a new strategy for data gathering in wireless sensor networks that takes into account the need for both energy saving, typical of such networks, and for a reasonable tradeoff between robustness and efficiency. The proposed algorithm implements an efficient strategy for retransmission of lost packets by discovering alternative routes and making clever use of multiple paths when necessary; in order to do that we build upon the general framework presented in recent works, that provided a formulation of duplicate and order insensitive aggregation functions, and by taking advantage of some intrinsic characteristics of the wireless sensor networks, we exploit implicit acknowledgment of reception and smart caching of the data. Assuming that, unlike in an ideal scenario, data originates from only a subset of all sensors, our approach provides a better usage of the resources and a minimization of the traffic in the network, and, as a consequence, of the overall consumed energy.