基于颜色特征滤波和超像素卷积神经网络的两阶段赛马场分割方法

János Hollósi, Ernő Horváth, C. Pozna
{"title":"基于颜色特征滤波和超像素卷积神经网络的两阶段赛马场分割方法","authors":"János Hollósi, Ernő Horváth, C. Pozna","doi":"10.1109/SACI.2018.8440968","DOIUrl":null,"url":null,"abstract":"The Széchenyi István University race car team is an active and successful participant of the Shell Eco-marathon for long time ago. The Shell introduces the autonomous vehicle category on the Eco-marathon for 2018. Our long-term goal is to make the Szenergy racing team's vehicle suitable for the autonomous category. The first milestone is to make a reliable computer vision based intelligent detection system that understands the environment of the racing car. In this paper we will present a solution for racetrack detection i.e. a fusion of image processing and neural network systems. The two-stage recognition system is at the first phase an image processing algorithm which finds the red-white and blue-white striped edge of the road, and at the second phase, a pre-trained superpixel-based neural network which recognize the road on the filtered image.","PeriodicalId":126087,"journal":{"name":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Stage Racetrack Segmentation Method Using Color Feature Filtering and Superpixel-Based Convolutional Neural Network\",\"authors\":\"János Hollósi, Ernő Horváth, C. Pozna\",\"doi\":\"10.1109/SACI.2018.8440968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Széchenyi István University race car team is an active and successful participant of the Shell Eco-marathon for long time ago. The Shell introduces the autonomous vehicle category on the Eco-marathon for 2018. Our long-term goal is to make the Szenergy racing team's vehicle suitable for the autonomous category. The first milestone is to make a reliable computer vision based intelligent detection system that understands the environment of the racing car. In this paper we will present a solution for racetrack detection i.e. a fusion of image processing and neural network systems. The two-stage recognition system is at the first phase an image processing algorithm which finds the red-white and blue-white striped edge of the road, and at the second phase, a pre-trained superpixel-based neural network which recognize the road on the filtered image.\",\"PeriodicalId\":126087,\"journal\":{\"name\":\"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2018.8440968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2018.8440968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

szacimchenyi István大学赛车队长期以来一直是壳牌生态马拉松的积极和成功的参与者。壳牌在2018年的生态马拉松中引入了自动驾驶汽车类别。我们的长期目标是使Szenergy车队的赛车适合自动驾驶类别。第一个里程碑是制造一个可靠的基于计算机视觉的智能检测系统,该系统可以理解赛车的环境。本文将提出一种赛道检测的解决方案,即图像处理与神经网络系统的融合。该识别系统分为两阶段,第一阶段是利用图像处理算法找到道路的红白和蓝白条纹边缘,第二阶段是利用预训练的基于超像素的神经网络对过滤后的图像进行道路识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Stage Racetrack Segmentation Method Using Color Feature Filtering and Superpixel-Based Convolutional Neural Network
The Széchenyi István University race car team is an active and successful participant of the Shell Eco-marathon for long time ago. The Shell introduces the autonomous vehicle category on the Eco-marathon for 2018. Our long-term goal is to make the Szenergy racing team's vehicle suitable for the autonomous category. The first milestone is to make a reliable computer vision based intelligent detection system that understands the environment of the racing car. In this paper we will present a solution for racetrack detection i.e. a fusion of image processing and neural network systems. The two-stage recognition system is at the first phase an image processing algorithm which finds the red-white and blue-white striped edge of the road, and at the second phase, a pre-trained superpixel-based neural network which recognize the road on the filtered image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信