用于远场扬声器验证的通道相互依赖增强扬声器嵌入

Ling-jun Zhao, M. Mak
{"title":"用于远场扬声器验证的通道相互依赖增强扬声器嵌入","authors":"Ling-jun Zhao, M. Mak","doi":"10.1109/ISCSLP49672.2021.9362108","DOIUrl":null,"url":null,"abstract":"Recognizing speakers from a distance using far-field microphones is difficult because of the environmental noise and reverberation distortion. In this work, we tackle these problems by strengthening the frame-level processing and feature aggregation of x-vector networks. Specifically, we restructure the dilated convolutional layers into Res2Net blocks to generate multi-scale frame-level features. To exploit the relationship between the channels, we introduce squeeze-and-excitation (SE) units to rescale the channels’ activations and investigate the best places to put these SE units in the Res2Net blocks. Based on the hypothesis that layers at different depth contain speaker information at different granularity levels, multi-block feature aggregation is introduced to propagate and aggregate the features at various depths. To optimally weight the channels and frames during feature aggregation, we propose a channel-dependent attention mechanism. Combining all of these enhancements leads to a network architecture called channel-interdependence enhanced Res2Net (CE-Res2Net). Results show that the proposed network achieves a relative improvement of about 16% in EER and 17% in minDCF on the VOiCES 2019 Challenge’s evaluation set.","PeriodicalId":279828,"journal":{"name":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Channel Interdependence Enhanced Speaker Embeddings for Far-Field Speaker Verification\",\"authors\":\"Ling-jun Zhao, M. Mak\",\"doi\":\"10.1109/ISCSLP49672.2021.9362108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognizing speakers from a distance using far-field microphones is difficult because of the environmental noise and reverberation distortion. In this work, we tackle these problems by strengthening the frame-level processing and feature aggregation of x-vector networks. Specifically, we restructure the dilated convolutional layers into Res2Net blocks to generate multi-scale frame-level features. To exploit the relationship between the channels, we introduce squeeze-and-excitation (SE) units to rescale the channels’ activations and investigate the best places to put these SE units in the Res2Net blocks. Based on the hypothesis that layers at different depth contain speaker information at different granularity levels, multi-block feature aggregation is introduced to propagate and aggregate the features at various depths. To optimally weight the channels and frames during feature aggregation, we propose a channel-dependent attention mechanism. Combining all of these enhancements leads to a network architecture called channel-interdependence enhanced Res2Net (CE-Res2Net). Results show that the proposed network achieves a relative improvement of about 16% in EER and 17% in minDCF on the VOiCES 2019 Challenge’s evaluation set.\",\"PeriodicalId\":279828,\"journal\":{\"name\":\"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCSLP49672.2021.9362108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP49672.2021.9362108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于环境噪声和混响失真,使用远场麦克风从远处识别说话者是困难的。在这项工作中,我们通过加强x向量网络的帧级处理和特征聚合来解决这些问题。具体来说,我们将扩展的卷积层重构为Res2Net块,以生成多尺度帧级特征。为了利用通道之间的关系,我们引入了挤压和激励(SE)单元来重新调整通道的激活,并研究在Res2Net块中放置这些SE单元的最佳位置。基于不同深度层包含不同粒度的说话人信息的假设,引入多块特征聚合,对不同深度的特征进行传播和聚合。为了在特征聚合过程中优化信道和帧的权重,我们提出了一种信道依赖的注意机制。将所有这些增强功能结合起来,就形成了一种称为通道相互依赖增强Res2Net (CE-Res2Net)的网络体系结构。结果表明,在VOiCES 2019 Challenge的评估集上,该网络在EER和minDCF方面分别实现了约16%和17%的相对改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Channel Interdependence Enhanced Speaker Embeddings for Far-Field Speaker Verification
Recognizing speakers from a distance using far-field microphones is difficult because of the environmental noise and reverberation distortion. In this work, we tackle these problems by strengthening the frame-level processing and feature aggregation of x-vector networks. Specifically, we restructure the dilated convolutional layers into Res2Net blocks to generate multi-scale frame-level features. To exploit the relationship between the channels, we introduce squeeze-and-excitation (SE) units to rescale the channels’ activations and investigate the best places to put these SE units in the Res2Net blocks. Based on the hypothesis that layers at different depth contain speaker information at different granularity levels, multi-block feature aggregation is introduced to propagate and aggregate the features at various depths. To optimally weight the channels and frames during feature aggregation, we propose a channel-dependent attention mechanism. Combining all of these enhancements leads to a network architecture called channel-interdependence enhanced Res2Net (CE-Res2Net). Results show that the proposed network achieves a relative improvement of about 16% in EER and 17% in minDCF on the VOiCES 2019 Challenge’s evaluation set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信