视频序列中目标跟踪算法分类的初步研究

A. M. Ocaña, F. Calderon
{"title":"视频序列中目标跟踪算法分类的初步研究","authors":"A. M. Ocaña, F. Calderon","doi":"10.1109/STSIVA.2012.6340574","DOIUrl":null,"url":null,"abstract":"Different techniques for tracking objects in controlled environments using video cameras have been proposed. These state of the art algorithms are focused especially on how to find a better segmentation of the tracking object and also on how to make this segmentation stable through time, regardless of temporal changes on the morphology of the object. Unlike any of that, this article reviews the state of the art, focusing on algorithms for segmentation of the scene and of tracking objects, then addresses the previous steps in the creation of a binary image that segments the objects and convert them into useful data, found frame by frame to be used afterwards for tracking. The intention is to classify the methods of temporal matching between the binary images which are the outcome of the segmentation of foreground and background into general groups, in order to give an organized starting point to the advances made regarding the tracking of moving objects with fixed cameras and to be able to adapt faster to the implementation of tracking on the new advances in specific techniques in the field of the proposed taxonomy.","PeriodicalId":383297,"journal":{"name":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Preliminary studies on the taxonomy of object's tracking algorithms in video sequences\",\"authors\":\"A. M. Ocaña, F. Calderon\",\"doi\":\"10.1109/STSIVA.2012.6340574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different techniques for tracking objects in controlled environments using video cameras have been proposed. These state of the art algorithms are focused especially on how to find a better segmentation of the tracking object and also on how to make this segmentation stable through time, regardless of temporal changes on the morphology of the object. Unlike any of that, this article reviews the state of the art, focusing on algorithms for segmentation of the scene and of tracking objects, then addresses the previous steps in the creation of a binary image that segments the objects and convert them into useful data, found frame by frame to be used afterwards for tracking. The intention is to classify the methods of temporal matching between the binary images which are the outcome of the segmentation of foreground and background into general groups, in order to give an organized starting point to the advances made regarding the tracking of moving objects with fixed cameras and to be able to adapt faster to the implementation of tracking on the new advances in specific techniques in the field of the proposed taxonomy.\",\"PeriodicalId\":383297,\"journal\":{\"name\":\"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2012.6340574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2012.6340574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在受控环境中使用摄像机跟踪目标的不同技术已经被提出。这些最先进的算法特别集中在如何找到跟踪对象的更好分割,以及如何使这种分割随着时间的推移而稳定,而不管对象形态的时间变化。不像这些,本文回顾了艺术的状态,重点是场景分割和跟踪对象的算法,然后解决了创建二进制图像的前面步骤,该图像分割对象并将其转换为有用的数据,逐帧找到用于跟踪。目的是将前景和背景分割的结果二值图像之间的时间匹配方法分类为一般组,以便为固定摄像机跟踪运动物体的进展提供一个有组织的起点,并能够更快地适应所提出的分类领域中特定技术的新进展的跟踪实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preliminary studies on the taxonomy of object's tracking algorithms in video sequences
Different techniques for tracking objects in controlled environments using video cameras have been proposed. These state of the art algorithms are focused especially on how to find a better segmentation of the tracking object and also on how to make this segmentation stable through time, regardless of temporal changes on the morphology of the object. Unlike any of that, this article reviews the state of the art, focusing on algorithms for segmentation of the scene and of tracking objects, then addresses the previous steps in the creation of a binary image that segments the objects and convert them into useful data, found frame by frame to be used afterwards for tracking. The intention is to classify the methods of temporal matching between the binary images which are the outcome of the segmentation of foreground and background into general groups, in order to give an organized starting point to the advances made regarding the tracking of moving objects with fixed cameras and to be able to adapt faster to the implementation of tracking on the new advances in specific techniques in the field of the proposed taxonomy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信