利用人员流动数据预测COVID-19在中国的传播

Shangbin Wu, Xiaoliang Fan, Longbiao Chen, Ming Cheng, Cheng Wang
{"title":"利用人员流动数据预测COVID-19在中国的传播","authors":"Shangbin Wu, Xiaoliang Fan, Longbiao Chen, Ming Cheng, Cheng Wang","doi":"10.1145/3474717.3483952","DOIUrl":null,"url":null,"abstract":"The coronavirus disease 2019 (COVID-19) break-out in late December 2019 has spread rapidly worldwide. Existing studies have shown that there is a significant correlation between large-scale human movements and the spread of the epidemic. However, there is a lack of quantification of these correlations, and it is still challenging to predict the spread of the epidemic at early stage. In this paper, we address this issue by conducting a statistical analysis on the spatio-temporal relationship between human mobility and the epidemic spread. Specifically, we proposed an improved SEIR model to adapt to the COVID-19 epidemic, so that we can predict the spread of the epidemic at the early stage using human mobility data and the early confirmed cases. We evaluated our model in various provinces and cities in China, and the results are superior to various baselines, verifying the effectiveness of the method.","PeriodicalId":340759,"journal":{"name":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting the spread of COVID-19 in China with human mobility data\",\"authors\":\"Shangbin Wu, Xiaoliang Fan, Longbiao Chen, Ming Cheng, Cheng Wang\",\"doi\":\"10.1145/3474717.3483952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coronavirus disease 2019 (COVID-19) break-out in late December 2019 has spread rapidly worldwide. Existing studies have shown that there is a significant correlation between large-scale human movements and the spread of the epidemic. However, there is a lack of quantification of these correlations, and it is still challenging to predict the spread of the epidemic at early stage. In this paper, we address this issue by conducting a statistical analysis on the spatio-temporal relationship between human mobility and the epidemic spread. Specifically, we proposed an improved SEIR model to adapt to the COVID-19 epidemic, so that we can predict the spread of the epidemic at the early stage using human mobility data and the early confirmed cases. We evaluated our model in various provinces and cities in China, and the results are superior to various baselines, verifying the effectiveness of the method.\",\"PeriodicalId\":340759,\"journal\":{\"name\":\"Proceedings of the 29th International Conference on Advances in Geographic Information Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474717.3483952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474717.3483952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

2019年12月下旬爆发的2019冠状病毒病(COVID-19)在全球迅速蔓延。现有研究表明,大规模人员流动与该流行病的传播之间存在显著相关性。然而,缺乏对这些相关性的量化,并且在早期阶段预测流行病的传播仍然具有挑战性。在本文中,我们通过统计分析人员流动与疫情传播的时空关系来解决这一问题。具体而言,我们提出了一种改进的SEIR模型,以适应COVID-19的流行,从而可以利用人员流动数据和早期确诊病例在早期预测疫情的传播。我们在中国各省市对我们的模型进行了评估,结果优于各种基线,验证了方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the spread of COVID-19 in China with human mobility data
The coronavirus disease 2019 (COVID-19) break-out in late December 2019 has spread rapidly worldwide. Existing studies have shown that there is a significant correlation between large-scale human movements and the spread of the epidemic. However, there is a lack of quantification of these correlations, and it is still challenging to predict the spread of the epidemic at early stage. In this paper, we address this issue by conducting a statistical analysis on the spatio-temporal relationship between human mobility and the epidemic spread. Specifically, we proposed an improved SEIR model to adapt to the COVID-19 epidemic, so that we can predict the spread of the epidemic at the early stage using human mobility data and the early confirmed cases. We evaluated our model in various provinces and cities in China, and the results are superior to various baselines, verifying the effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信