l1 -最小化问题的加速近端算法

Xiaoya Zhang, Hongxia Wang, Hui Zhang
{"title":"l1 -最小化问题的加速近端算法","authors":"Xiaoya Zhang, Hongxia Wang, Hui Zhang","doi":"10.1109/ICCWAMTIP.2014.7073378","DOIUrl":null,"url":null,"abstract":"Linearized Bregman algorithm is effective on solving l1-minimization problem, but its parameter's selection must rely on prior information. In order to ameliorate this weakness, we proposed a new algorithm in this paper, which combines the proximal point algorithm and the linearized Bregman iterative method. In the second part of the paper, the proposed algorithm is further accelerated through Nestrove's accelerated scheme and parameters' reset skills. Compared with the original linearized Bregman algorithm, the accelerated algorithms have better convergent speed while avoiding selecting model parameter. Simulations on sparse recovery problems show the new algorithms really have robust parameter's selections, and improve the convergent precision at the same time.","PeriodicalId":211273,"journal":{"name":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accelerated proximal algorithms for L1-minimization problem\",\"authors\":\"Xiaoya Zhang, Hongxia Wang, Hui Zhang\",\"doi\":\"10.1109/ICCWAMTIP.2014.7073378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linearized Bregman algorithm is effective on solving l1-minimization problem, but its parameter's selection must rely on prior information. In order to ameliorate this weakness, we proposed a new algorithm in this paper, which combines the proximal point algorithm and the linearized Bregman iterative method. In the second part of the paper, the proposed algorithm is further accelerated through Nestrove's accelerated scheme and parameters' reset skills. Compared with the original linearized Bregman algorithm, the accelerated algorithms have better convergent speed while avoiding selecting model parameter. Simulations on sparse recovery problems show the new algorithms really have robust parameter's selections, and improve the convergent precision at the same time.\",\"PeriodicalId\":211273,\"journal\":{\"name\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2014.7073378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2014.7073378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

线性化Bregman算法是求解11 -最小化问题的有效算法,但其参数的选取必须依赖于先验信息。为了改善这一缺点,本文提出了一种新的算法,该算法将近点算法与线性化Bregman迭代法相结合。在论文的第二部分,通过Nestrove的加速方案和参数重置技巧,进一步加快了算法的速度。与原始线性化Bregman算法相比,加速算法在避免模型参数选择的同时收敛速度更快。对稀疏恢复问题的仿真表明,新算法具有鲁棒的参数选择能力,同时提高了收敛精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated proximal algorithms for L1-minimization problem
Linearized Bregman algorithm is effective on solving l1-minimization problem, but its parameter's selection must rely on prior information. In order to ameliorate this weakness, we proposed a new algorithm in this paper, which combines the proximal point algorithm and the linearized Bregman iterative method. In the second part of the paper, the proposed algorithm is further accelerated through Nestrove's accelerated scheme and parameters' reset skills. Compared with the original linearized Bregman algorithm, the accelerated algorithms have better convergent speed while avoiding selecting model parameter. Simulations on sparse recovery problems show the new algorithms really have robust parameter's selections, and improve the convergent precision at the same time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信