{"title":"网格表面和体积与质心Voronoi镶嵌","authors":"B. Lévy","doi":"10.1109/ISVD.2011.41","DOIUrl":null,"url":null,"abstract":"We present several variations on Centroidal Voronoi Tesselations. First we review the classical definition, as a stable critical point of an objective function (quantization noise power), then we propose some modifications of the objective function (anisotropy, Lp norm). The so-modified Centroidal Voronoi Tesselations are useful for applications in geometry processing. Thus we demonstrate feature-aware surface remeshing, hexaedral-dominant meshing of 3D domains and fitting subdivision surfaces to unstructured triangle sets.","PeriodicalId":152151,"journal":{"name":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meshing Surfaces and Volumes with Centroidal Voronoi Tesselations\",\"authors\":\"B. Lévy\",\"doi\":\"10.1109/ISVD.2011.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present several variations on Centroidal Voronoi Tesselations. First we review the classical definition, as a stable critical point of an objective function (quantization noise power), then we propose some modifications of the objective function (anisotropy, Lp norm). The so-modified Centroidal Voronoi Tesselations are useful for applications in geometry processing. Thus we demonstrate feature-aware surface remeshing, hexaedral-dominant meshing of 3D domains and fitting subdivision surfaces to unstructured triangle sets.\",\"PeriodicalId\":152151,\"journal\":{\"name\":\"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVD.2011.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2011.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Meshing Surfaces and Volumes with Centroidal Voronoi Tesselations
We present several variations on Centroidal Voronoi Tesselations. First we review the classical definition, as a stable critical point of an objective function (quantization noise power), then we propose some modifications of the objective function (anisotropy, Lp norm). The so-modified Centroidal Voronoi Tesselations are useful for applications in geometry processing. Thus we demonstrate feature-aware surface remeshing, hexaedral-dominant meshing of 3D domains and fitting subdivision surfaces to unstructured triangle sets.