Santosh Tirunagari, N. Poh, K. Aliabadi, David Windridge, Deborah Cooke
{"title":"使用自组织地图的患者水平分析:1型糖尿病自我护理调查回应的案例研究","authors":"Santosh Tirunagari, N. Poh, K. Aliabadi, David Windridge, Deborah Cooke","doi":"10.1109/CIDM.2014.7008682","DOIUrl":null,"url":null,"abstract":"Survey questionnaires are often heterogeneous because they contain both quantitative (numeric) and qualitative (text) responses, as well as missing values. While traditional, model-based methods are commonly used by clinicians, we deploy Self Organizing Maps (SOM) as a means to visualise the data. In a survey study aiming at understanding the self-care behaviour of 611 patients with Type-1 Diabetes, we show that SOM can be used to (1) identify co-morbidities; (2) to link self-care factors that are dependent on each other; and (3) to visualise individual patient profiles; In evaluation with clinicians and experts in Type-1 Diabetes, the knowledge and insights extracted using SOM correspond well to clinical expectation. Furthermore, the output of SOM in the form of a U-matrix is found to offer an interesting alternative means of visualising patient profiles instead of a usual tabular form.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Patient level analytics using self-organising maps: A case study on Type-1 Diabetes self-care survey responses\",\"authors\":\"Santosh Tirunagari, N. Poh, K. Aliabadi, David Windridge, Deborah Cooke\",\"doi\":\"10.1109/CIDM.2014.7008682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Survey questionnaires are often heterogeneous because they contain both quantitative (numeric) and qualitative (text) responses, as well as missing values. While traditional, model-based methods are commonly used by clinicians, we deploy Self Organizing Maps (SOM) as a means to visualise the data. In a survey study aiming at understanding the self-care behaviour of 611 patients with Type-1 Diabetes, we show that SOM can be used to (1) identify co-morbidities; (2) to link self-care factors that are dependent on each other; and (3) to visualise individual patient profiles; In evaluation with clinicians and experts in Type-1 Diabetes, the knowledge and insights extracted using SOM correspond well to clinical expectation. Furthermore, the output of SOM in the form of a U-matrix is found to offer an interesting alternative means of visualising patient profiles instead of a usual tabular form.\",\"PeriodicalId\":117542,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2014.7008682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Patient level analytics using self-organising maps: A case study on Type-1 Diabetes self-care survey responses
Survey questionnaires are often heterogeneous because they contain both quantitative (numeric) and qualitative (text) responses, as well as missing values. While traditional, model-based methods are commonly used by clinicians, we deploy Self Organizing Maps (SOM) as a means to visualise the data. In a survey study aiming at understanding the self-care behaviour of 611 patients with Type-1 Diabetes, we show that SOM can be used to (1) identify co-morbidities; (2) to link self-care factors that are dependent on each other; and (3) to visualise individual patient profiles; In evaluation with clinicians and experts in Type-1 Diabetes, the knowledge and insights extracted using SOM correspond well to clinical expectation. Furthermore, the output of SOM in the form of a U-matrix is found to offer an interesting alternative means of visualising patient profiles instead of a usual tabular form.