仿人机器人增量模仿学习的自主运动原语分割

Farhan Dawood, C. Loo
{"title":"仿人机器人增量模仿学习的自主运动原语分割","authors":"Farhan Dawood, C. Loo","doi":"10.1109/RIISS.2014.7009169","DOIUrl":null,"url":null,"abstract":"During imitation learning or learning by demon-stration/observation, a crucial element of conception involves segmenting the continuous flow of motion into simpler units ÂĂŗ- motion primitives -ÂĂŗ by identifying the boundaries of an action. Secondly, in realistic environment the robot must be able to learn the observed motion patterns incrementally in a stable adaptive manner. In this paper, we propose an on-line and unsupervised motion segmentation method rendering the robot to learn actions by observing the patterns performed by other partner through Incremental Slow Feature Analysis. The segmentation model directly operates on the images acquired from the robot's vision sensor (camera) without requiring any kinematic model of the demonstrator. After segmentation, the spatio-temporal motion sequences are learned incrementally through Topological Gaussian Adaptive Resonance Hidden Markov Model. The learning model dynamically generates the topological structure in a self-organizing and self-stabilizing manner.","PeriodicalId":270157,"journal":{"name":"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Autonomous motion primitive segmentation of actions for incremental imitative learning of humanoid\",\"authors\":\"Farhan Dawood, C. Loo\",\"doi\":\"10.1109/RIISS.2014.7009169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During imitation learning or learning by demon-stration/observation, a crucial element of conception involves segmenting the continuous flow of motion into simpler units ÂĂŗ- motion primitives -ÂĂŗ by identifying the boundaries of an action. Secondly, in realistic environment the robot must be able to learn the observed motion patterns incrementally in a stable adaptive manner. In this paper, we propose an on-line and unsupervised motion segmentation method rendering the robot to learn actions by observing the patterns performed by other partner through Incremental Slow Feature Analysis. The segmentation model directly operates on the images acquired from the robot's vision sensor (camera) without requiring any kinematic model of the demonstrator. After segmentation, the spatio-temporal motion sequences are learned incrementally through Topological Gaussian Adaptive Resonance Hidden Markov Model. The learning model dynamically generates the topological structure in a self-organizing and self-stabilizing manner.\",\"PeriodicalId\":270157,\"journal\":{\"name\":\"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIISS.2014.7009169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIISS.2014.7009169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在模仿学习或通过示范/观察学习期间,概念的一个关键要素包括将连续的运动流分割成更简单的单位ÂĂŗ-运动原语-ÂĂŗ,通过识别动作的边界。其次,在现实环境中,机器人必须能够以稳定的自适应方式增量学习观察到的运动模式。在本文中,我们提出了一种在线无监督运动分割方法,通过增量慢特征分析,使机器人通过观察其他伙伴的动作模式来学习动作。分割模型直接对从机器人视觉传感器(摄像头)获取的图像进行操作,而不需要演示器的任何运动学模型。分割后的时空运动序列通过拓扑高斯自适应共振隐马尔可夫模型进行增量学习。该学习模型以自组织、自稳定的方式动态生成拓扑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous motion primitive segmentation of actions for incremental imitative learning of humanoid
During imitation learning or learning by demon-stration/observation, a crucial element of conception involves segmenting the continuous flow of motion into simpler units ÂĂŗ- motion primitives -ÂĂŗ by identifying the boundaries of an action. Secondly, in realistic environment the robot must be able to learn the observed motion patterns incrementally in a stable adaptive manner. In this paper, we propose an on-line and unsupervised motion segmentation method rendering the robot to learn actions by observing the patterns performed by other partner through Incremental Slow Feature Analysis. The segmentation model directly operates on the images acquired from the robot's vision sensor (camera) without requiring any kinematic model of the demonstrator. After segmentation, the spatio-temporal motion sequences are learned incrementally through Topological Gaussian Adaptive Resonance Hidden Markov Model. The learning model dynamically generates the topological structure in a self-organizing and self-stabilizing manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信