H. B. Kekre, T. Sarode, V. Bharadi, A. Agrawal, R. J. Arora, M. Nair
{"title":"基于矢量量化的虹膜识别","authors":"H. B. Kekre, T. Sarode, V. Bharadi, A. Agrawal, R. J. Arora, M. Nair","doi":"10.1109/ICSAP.2010.45","DOIUrl":null,"url":null,"abstract":"In today’s world, where terrorist attacks are on the rise, employment of infallible security systems is a must. Iris recognition enjoys universality, high degree of uniqueness and moderate user co-operation. This makes Iris recognition systems unavoidable in emerging security & authentication mechanisms. We propose an iris recognition system based on vector quantization. The proposed system does not need any pre-processing and segmentation of the iris. We have tested LBG, Kekre’s Proportionate Error Algorithm (KPE) & Kekre’s Fast Codebook Generation Algorithm (KFCG) for the clustering purpose. From the results it is observed that KFCG requires 99.79% less computations as that of LBG and KPE. Further the KFCG method gives best performance with the accuracy of 89.10% outperforming LBG that gives accuracy around 81.25%. Performance of individual methods is evaluated and presented in this paper.","PeriodicalId":303366,"journal":{"name":"2010 International Conference on Signal Acquisition and Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Iris Recognition Using Vector Quantization\",\"authors\":\"H. B. Kekre, T. Sarode, V. Bharadi, A. Agrawal, R. J. Arora, M. Nair\",\"doi\":\"10.1109/ICSAP.2010.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today’s world, where terrorist attacks are on the rise, employment of infallible security systems is a must. Iris recognition enjoys universality, high degree of uniqueness and moderate user co-operation. This makes Iris recognition systems unavoidable in emerging security & authentication mechanisms. We propose an iris recognition system based on vector quantization. The proposed system does not need any pre-processing and segmentation of the iris. We have tested LBG, Kekre’s Proportionate Error Algorithm (KPE) & Kekre’s Fast Codebook Generation Algorithm (KFCG) for the clustering purpose. From the results it is observed that KFCG requires 99.79% less computations as that of LBG and KPE. Further the KFCG method gives best performance with the accuracy of 89.10% outperforming LBG that gives accuracy around 81.25%. Performance of individual methods is evaluated and presented in this paper.\",\"PeriodicalId\":303366,\"journal\":{\"name\":\"2010 International Conference on Signal Acquisition and Processing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Signal Acquisition and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAP.2010.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Signal Acquisition and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAP.2010.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In today’s world, where terrorist attacks are on the rise, employment of infallible security systems is a must. Iris recognition enjoys universality, high degree of uniqueness and moderate user co-operation. This makes Iris recognition systems unavoidable in emerging security & authentication mechanisms. We propose an iris recognition system based on vector quantization. The proposed system does not need any pre-processing and segmentation of the iris. We have tested LBG, Kekre’s Proportionate Error Algorithm (KPE) & Kekre’s Fast Codebook Generation Algorithm (KFCG) for the clustering purpose. From the results it is observed that KFCG requires 99.79% less computations as that of LBG and KPE. Further the KFCG method gives best performance with the accuracy of 89.10% outperforming LBG that gives accuracy around 81.25%. Performance of individual methods is evaluated and presented in this paper.