一种用于快速目标跟踪的新型粒子滤波器

Qicong Wang, Wenxiao Jiang, Chenhui Yang, Yunqi Lei
{"title":"一种用于快速目标跟踪的新型粒子滤波器","authors":"Qicong Wang, Wenxiao Jiang, Chenhui Yang, Yunqi Lei","doi":"10.1109/IWACI.2010.5585219","DOIUrl":null,"url":null,"abstract":"This paper proposes a fast target tracking method in which particle filter is improved using Gaussian kernel and evolutionary strategy. We use Gaussian kernel function to replace the Dirac kernel function, which can decrease the degeneracy problem of the traditional particle filter partly. To further improve the performance of particle filter, we introduce evolutionary strategy into the process of Gaussian kernel particle filtering. It uses only mutation operation, which has less computation than genetic algorithm. And it can prevent the impoverishment problem and steer the particles towards local mode of posterior probability effectively. The proposed method can track fast target robustly using fewer particles than the standard particle filter and Gaussian kernel particle filter.","PeriodicalId":189187,"journal":{"name":"Third International Workshop on Advanced Computational Intelligence","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A novel particle filter for tracking fast target\",\"authors\":\"Qicong Wang, Wenxiao Jiang, Chenhui Yang, Yunqi Lei\",\"doi\":\"10.1109/IWACI.2010.5585219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a fast target tracking method in which particle filter is improved using Gaussian kernel and evolutionary strategy. We use Gaussian kernel function to replace the Dirac kernel function, which can decrease the degeneracy problem of the traditional particle filter partly. To further improve the performance of particle filter, we introduce evolutionary strategy into the process of Gaussian kernel particle filtering. It uses only mutation operation, which has less computation than genetic algorithm. And it can prevent the impoverishment problem and steer the particles towards local mode of posterior probability effectively. The proposed method can track fast target robustly using fewer particles than the standard particle filter and Gaussian kernel particle filter.\",\"PeriodicalId\":189187,\"journal\":{\"name\":\"Third International Workshop on Advanced Computational Intelligence\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Workshop on Advanced Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWACI.2010.5585219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Workshop on Advanced Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWACI.2010.5585219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种利用高斯核和进化策略改进粒子滤波的快速目标跟踪方法。我们用高斯核函数代替狄拉克核函数,可以在一定程度上减少传统粒子滤波的退化问题。为了进一步提高粒子滤波的性能,我们在高斯核粒子滤波过程中引入进化策略。它只使用变异运算,计算量比遗传算法少。它能有效地防止粒子的贫化问题,使粒子向后验概率的局部模态方向运动。该方法比标准粒子滤波和高斯核粒子滤波使用更少的粒子对快速目标进行鲁棒跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel particle filter for tracking fast target
This paper proposes a fast target tracking method in which particle filter is improved using Gaussian kernel and evolutionary strategy. We use Gaussian kernel function to replace the Dirac kernel function, which can decrease the degeneracy problem of the traditional particle filter partly. To further improve the performance of particle filter, we introduce evolutionary strategy into the process of Gaussian kernel particle filtering. It uses only mutation operation, which has less computation than genetic algorithm. And it can prevent the impoverishment problem and steer the particles towards local mode of posterior probability effectively. The proposed method can track fast target robustly using fewer particles than the standard particle filter and Gaussian kernel particle filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信